Степенные ряды

 






ВЫСШАЯ МАТЕМАТИКА

Степенные ряды

Содержание


1. Определение степенного ряда. Теорема Абеля

2. Свойства степенных рядов

3. Ряды Тейлора, Маклорена для функций

4. Разложение некоторых элементарных функций в ряд Маклорена

5. Приложения степенных рядов

1. Определение степенного ряда. Теорема Абеля


Степенные ряды являются частным случаем функциональных рядов.

Определение 1.1. Степенным рядом называется функциональный ряд вида .(1.1)


Здесь  – постоянные вещественные числа, называемые коэффициентами степенного ряда; а – некоторое постоянное число, х – переменная, принимающая значения из множества действительных чисел.

При  степенной ряд (1.1) принимает вид


. (1.2)


Степенной ряд (1.1) называют рядом по степеням разности , ряд (1.2) – рядом по степеням х.

Если переменной х придать какое-либо значение, то степенной ряд (1.1) (или (1.2)) превращается в числовой ряд, который может сходиться или расходиться.

Определение 1.2. Областью сходимости степенного ряда называется множество тех значений х, при которых степенной ряд сходится.

Ряд (1.1) с помощью подстановки  приводится к более простому виду (1.2), поэтому вначале будем рассматривать степенные ряды вида (1.2).

Для нахождения области сходимости степенного ряда важную роль играет следующая теорема.

Теорема 1.1 (Теорема Абеля):

если степенной ряд (1.2) сходится при , то он абсолютно сходится при всех значениях х, удовлетворяющих неравенству ; если же ряд (1.2) расходится при , то он расходится при всех значениях х, удовлетворяющих неравенству .

Теорема Абеля дает ясное представление о структуре области сходимости степенного ряда.

Теорема 1.2:

область сходимости степенного ряда (1.2) совпадает с одним из следующих интервалов:

 

1) ; 2) ; 3) ; 4) ,

 

где R – некоторое неотрицательное действительное число или .


Число R называется радиусом сходимости, интервал  – интервалом сходимости степенного ряда (1.2).

Если , то интервал сходимости представляет собой всю числовую ось .

Если , то интервал сходимости вырождается в точку .

Замечание: если  – интервал сходимости для степенного ряда (1.2), то  – интервал сходимости для степенного ряда (1.1).

Из теоремы 1.2 следует, что для практического нахождения области сходимости степенного ряда (1.2) достаточно найти его радиус сходимости R и выяснить вопрос о сходимости этого ряда на концах интервала сходимости , т. е. при  и .

Радиус сходимости R степенного ряда можно найти по одной из следующих формул:

формула Даламбера:

;(1.3)


формула Коши:

 

.(1.4)


Если в формуле Коши , то полагают , если , то полагают .

Пример 1.1. Найти радиус сходимости, интервал сходимости и область сходимости степенного ряда .


Решение

Найдем радиус сходимости данного ряда по формуле



В нашем случае


, .


Тогда .

Следовательно, интервал сходимости данного ряда имеет вид .

Исследуем сходимость ряда на концах интервала сходимости.

При  степенной ряд превращается в числовой ряд


 .


который расходится как гармонический ряд.

При  степенной ряд превращается в числовой ряд


 .


Это – знакочередующийся ряд, члены которого убывают по абсолютной величине и . Следовательно, по признаку Лейбница этот числовой ряд сходится.

Таким образом, промежуток  – область сходимости данного степенного ряда.

 

2. Свойства степенных рядов


Степенной ряд (1.2) представляет собой функцию , определенную в интервале сходимости , т. е.


.


Приведем несколько свойств функции .


Свойство 1. Функция  является непрерывной на любом отрезке , принадлежащем интервалу сходимости .

Свойство 2. Функция  дифференцируема на интервале , и ее производная  может быть найдена почленным дифференцированием ряда (1.2), т. е.


,


для всех .


Свойство 3. Неопределенный интеграл от функции  для всех  может быть получен почленным интегрированием ряда (1.2), т. е.



для всех .


Следует отметить, что при почленном дифференцировании и интегрировании степенного ряда его радиус сходимости R не меняется, однако его сходимость на концах интервала  может измениться.

Приведенные свойства справедливы также и для степенных рядов (1.1).

Пример 2.1. Рассмотрим степенной ряд


.


Область сходимости этого ряда, как показано в примере 1.1, есть промежуток .

Почленно продифференцируем этот ряд:


.(2.1)


По свойству 2 интервал сходимости полученного степенного ряда (2.1) есть интервал .

Исследуем поведение этого ряда на концах интервала сходимости,  т. е. при  и при .

При  степенной ряд (2.1) превращается в числовой ряд


 .

Этот числовой ряд расходится, так как не выполняется необходимый признак сходимости : , который не существует.

При  степенной ряд (2.1) превращается в числовой ряд


 ,


который также расходится, так как не выполняется необходимый признак сходимости.

Следовательно, область сходимости степенного ряда, полученного при почленном дифференцировании исходного степенного ряда, изменилась и совпадает с интервалом .

 

3. Ряды Тейлора, Маклорена для функций


Пусть  – дифференцируемая бесконечное число раз функция  в окрестности точки , т. е. имеет производные любых порядков.

Определение 3.1. Рядом Тейлора функции  в точке  называется степенной ряд


. (3.1)


В частном случае при  ряд (3.1) называется рядом Маклорена:

. (3.2)


Возникает вопрос: в каких случаях ряд Тейлора для дифференцированной бесконечное число раз функции  в окрестности точки  совпадает с функцией ?

Возможны случаи, когда ряд Тейлора функции  сходится, однако его сумма не равна .

Приведем достаточное условие сходимости ряда Тейлора функции  к этой функции.

Теорема 3.1:

если в интервале  функция  имеет производные любого порядка и все они по абсолютной величине ограничены одним и тем же числом, т. е. , то ряд Тейлора этой функции сходится к  для любого х из этого интервала , т. е. имеет место равенство

 

.


Для выяснения выполнения этого равенства на концах интервала сходимости требуются отдельные исследования.

Следует отметить, что если функция разлагается в степенной ряд, то этот ряд является рядом Тейлора (Маклорена) этой функции, причем это разложение единственно.

4. Разложение некоторых элементарных функций в ряд Маклорена


1. . Для этой функции ,  .

По формуле (3.2) составим ряд Маклорена данной функции:


. (3.3)


Найдем радиус сходимости ряда (3.3) по формуле (1.3):


.


Следовательно, ряд (3.3) сходится при любом значении .

Все производные функции  на любом отрезке  ограничены, т. е.

 

 .


Поэтому, согласно теореме 3.1, имеет место разложение


. (3.4)


2. . Для этой функции , ,  .

Отсюда следует, что при  производные четного порядка равны нулю, а производные нечетного порядка чередуют знак с плюса на минус.

По формуле (3.2) составим ряд Маклорена:


 .


При любом фиксированном значении этот ряд сходится как знакочередующийся по признаку Лейбница. При этом

 

 .


Поэтому, согласно теореме 3.1, имеет место разложение


. (3.5)


3. . Воспользуемся разложением (3.5) в ряд Маклорена функции  и свойством 2 о дифференцировании степенного ряда. Имеем


 .

(3.6)


Поскольку при почленном дифференцировании интервал сходимости степенного ряда не изменяется, то разложение (3.6) имеет место при любом .

Приведем без доказательства разложения других элементарных функций в ряды Маклорена.


4.

 – биномиальный ряд ( – любое действительное число).


Если  – положительное целое число, то получаем бином Ньютона:


.

 – логарифмический ряд.

.

 

5. Приложения степенных рядов


Степенные ряды находят применение в таких задачах, как приближенное вычисление функций с заданной степенью точности, определенных интегралов, решение дифференциальных уравнений и др.

Приближенное значение функции вычисляют, заменяя ряд Маклорена этой функции конечным числом его членов.

Приведем приближенные формулы для вычисления некоторых наиболее часто встречающихся функций при достаточно малых значениях х:


; ; ; ;

; .

Литература


1. Высшая математика: Общий курс: Учебник – 2-е изд., перераб. / А.И. Яблонский, А.В. Кузнецов, Е.И. Шилкина и др.; Под общ. ред. С.А. Самаля. – Мн.: Выш. шк., 2000.– 351 с.

2. Марков Л.Н., Размыслович Г.П. Высшая математика. Ч. 2. Основы математического анализа и элементы дифференциальных уравнений. – Мн.: Амалфея, 2003. – 352 с.


ВЫСШАЯ МАТЕМАТИКА Степенные ряды Содержание 1. Определение степенного ряда. Теорема

Больше работ по теме:

КОНТАКТНЫЙ EMAIL: [email protected]

Скачать реферат © 2019 | Пользовательское соглашение

Скачать      Реферат

ПРОФЕССИОНАЛЬНАЯ ПОМОЩЬ СТУДЕНТАМ