Сернокислотное алкилиривание изобутана бутиленом

 

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ

ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра технологии нефти и газа









«Сернокислотное алкилиривание изобутана бутиленом»





Выполнил: ст. гр. БТП-07-01

Э.С. Даутов

К.О. Фазлыев

Проверил: доцент кафедры ТНГ,

О.Ю. Белоусова канд. техн. наук





Уфа 2010


Содержание


1 Назначение процесса

2 Сырье

Технологические параметры

Влияние серной кислоты

Технологический режим С-алкилирования

6 Катализаторы С-алкилирования

7 Механизм и стадии превращения

Список использованной литературы


1. Назначение процесса


Сернокислотное алкилирование для производства высокооктанового изокомпонента бензинов С- алкилированием изобутана бутиленами и пропиленом. Целевой продукт процесса - алкилат, состоящий практически нацело из изопарафинов, имеет высокое октановое число (90…95 по моторному методу). Октановое число основного компонента алкилата - изооктана (2,2,4-триметилпентана) - принято, как известно, за 100.

В 1932 г. В. Н. Ипатьев показал возможность считавшегося до того инертным взаимодействия изобутана с олефинами. В качестве катализатора были использованы сначала АlСl3, затем серная и фтористоводородная кислоты. Первая промышленная установка сернокислотного С-алкилирования была введена в эксплуатацию в США в 1938 г., а фтористоводородного - в 1942 г. Целевым продуктом вначале был исключительно компонент авиабензина, и лишь в послевоенные годы на базе газов каталитического крекинга алкилирование стали использовать для улучшения моторных качеств товарных автобензинов. Первая отечественная установка сернокислотного алкилирования была введена в 1942 г. на Грозненском НПЗ.


2. Сырье


С-алкилированию в нефтепереработке чаще всего подвергают изобутан и значительно реже изопентан (последний является ценным компонентом автобензина (его ОЧИМ = 93). Существенное влияние на показатели процесса оказывает состав алкенов. Этилен практически не алкилирует изобутан, но сульфатируется и полимеризуется. Пропилен легко вступает в реакцию с изобутаном, но октановое число мень-ше, чем при алкилировании бутиленами (табл. 6.6). Высшие алкены (С5 и выше) более склонны к реакциям деструктивного алкилирования с образованием низкомолекулярных и низкооктановых продуктов. Как видно из табл. 6.6, оптимальным сырьем для С-алкилирования изобутана являются бутилены. В нефтепереработке в качестве алкенового сырья обычно используют бутан-бутиленовую фракцию в смеси с пропан-пропиленовой с содержанием пропилена менее 50 % от суммы алкенов.

Алканы нормального строения С3-С5 в реакцию алкилирования не вступают и являются инертными примесями.

Диены, содержащиеся в сырье, образуют сложные продукты взаимодействия с серной кислотой и остаются в кислотной фазе, разбавляя кислоту, что увеличивает его расход. Поэтому диеновые углеводороды не должны содержаться в сырье. К сырью С-алкилирования предъявляются также повышенные требования по содержанию влаги и сернистых соединений. Если сырье каталитического крекинга не подвергалось предварительной гидроочистке, то бутан-бутиленовую фракцию крекинга - сырье С-алкилирования - обычно очищают щелочью или в процессах типа «Мерокс» от сернистых соединений.


Таблица 1 - Зависимость показателей процесса сернокислотного алкилирования изобутана от состава алкенов

ПоказательСырьеПропиленПропиленАмиленОбъемный выход алкилата, % на алкен175...187170...172155...160Объемный расход изобутана, % на алкен127...135111...11796...114Удельный расход кислоты на алкилат, кг/м3216...24048...72120Октановое число алкилата: моторный метод88..9092...9491 исследовательский метод89...9194...9692...93

3. Технологические параметры


Основы управления процессом сернокислотного С-алкилирования. Важными оперативными параметрами, влияющими на материальный баланс и качество продуктов С-алкилирования, являются давление, температура, объемная скорость сырья, концентрация кислоты, соотношения изобутан : олефин, кислота : сырье и интенсивность перемешивания сырья с катализатором.

Давление. При сернокислотном жидкофазном С-алкилировании изменение давления не оказывает существенного влияния на процесс. Давление должно ненамного превышать упругость паров углеводородов сырья при температуре катализа. Обычно в реакторах с внутренней системой охлаждения при С-алкилировании изобутана бутиленами поддерживают давление 0,35…0,42 МПа. Если сырье содержит пропан-пропиленовую фракцию, то давление в реакторе несколько повышают.

Температура. При повышении температуры снижается вязкость кислоты и углеводородов и создаются более благоприятные условия для их перемешивания и диспергирования. Это обусловливает большую скорость сорбции углеводородов кислотой и, следовательно, большую скорость всех протекающих реакций. При этом снижаются затраты энергии на перемешивание сырья и катализатора, что улучшает экономические показатели процесса.


Рисунок 1- Влияние температуры на октановое число алкилата


Однако повышение температуры выше 15 °С интенсифицирует побочные реакции деструктивного алкилирования, полимеризации и сульфирования углеводородов в большей степени, чем целевую реакцию. При этом увеличивается содержание малоразветвленных алканов, снижается избирательность реакций С-алкилирования, возрастает расход кислоты и ухудшается качество алкилата (рис.1).

Снижение температуры в определенных пределах оказывает благоприятное влияние на селективность реакций, выход и качество алкилата. Лимитирующим фактором при снижении температуры реакции является чрезмерное повышение вязкости кислоты, что затрудняет создание эмульсий с высокой поверхностью раздела фаз. На практике оптимальный интервал температур при С-алкилировании изобутана бутиленами составляет 5…13 °С, а пропиленом - 10…22 °С.

Соотношение изобутан: олефин является одним из важнейших параметров С-алкилирования. Избыток изобутана интенсифицирует целевую и подавляет побочные реакции С-алкилирования.


Таблица 2 - Влияние отношения изобутана к бутиленам на выходные показатели сернокислотного С-алкилирования

Соотношение изобутан : олефин7 : 15 : 13 : 1Выход алкилата (н. к. - 177 °С), % об163160156Октановое число алкилата (ОЧММ)93,592,591,5

Чрезмерное повышение этого соотношения увеличивает капитальные и эксплуатационные затраты, поэтому поддерживать его выше 10 : 1 нерентабельно.


4. Влияние серной кислоты


Концентрация кислоты. Для С-алкилирования бутан-бутиленовых углеводородов обычно используют серную кислоту, содержащую от 88 до 98 % моногидрата. Снижение ее концентрации в процессе работы происходит за счет накопления высокомолекулярных полимерных соединений и воды, попадающей в систему вместе с сырьем. Если концентрация кислоты становится ниже 88 %, усиливаются побочные реакции, приводящие к ухудшению качества алкилата (рис. 2).


Рисунок 2 - Влияние концентрации серной кислоты на октановое число алкилбензина


Кривая зависимости ОЧММ дебутанизированного алкилбензина, полученного из фракции С4, от концентрации H2SO4 имеет четко выраженный максимум при концентрации 95…96 %. При С-алкилировании пропиленом лучше использовать более концентрированную - 100...101 %-ю кислоту. Разбавление H2SO4 водой более интенсивно снижает активность катализатора, чем разбавление высокомолекулярными соединениями. В этой связи рекомендуется тщательно осушать сырье и циркулирующие в системе углеводороды.Соотношение серная кислота : сырье характеризует концентрации катализатора и сырья в реакционной смеси. Скорость процесса С-алкилирования в соответствии с законом действующих поверхностей должна описываться как функция от произведения концентраций кислоты и углеводородов на границе раздела фаз (т. е. поверхностных концентраций). Соотношение катализатор : сырье должно быть в оптимальных пределах, при которых достигается максимальный выход алкилата высокого качества. Оптимальное значение этого отношения (объемного) составляет около 1,5. Объемная скорость подачи сырья выражается отношением объема сырья, подаваемого в единицу времени, к объему катализатора в реакторе. Влияние этого параметра на результаты С-алкилирования во многом зависит от конструкции реактора и, поскольку процесс диффузионный, от эффективности его перемешивающего устройства. Если перемешивание недостаточно эффективно, возможно, что не вся масса кислоты контактирует с углеводородным сырьем. Экспериментально установлено: при оптимальных значениях остальных оперативных параметров продолжительность пребывания сырья в реакторе - 200…1200 с, что соответствует объемной скорости подачи олефинов 0,3...0,.


5. Технологический режим С-алкилирования


Таблица 3 - Технологический режим С-алкилирования

Секция С-алкилированияТемпература, °С5…15Давление, МПа0,6…1,0Мольное соотношение иэобутан : бутилены(6…12) : 1Объемное соотношение кислота : сырье(1,1…1,5) : 1Объемная скорость подачи олефинов, 0,3…0,5Концентрация H2SO4, по моногидрату88…99Секция ректификацииК-1К-2К-3К-4Давление, МПа1,6…1,70,70,40,12…0,13Температура, °С:верха40…4545…5045…50100…110низа85…10095…100130…140200…220Число тарелок40804020

6. Катализаторы С-алкилирования


Из всех возможных кислотных катализаторов в промышленных процессах алкилирования применение получили только серная и фтористоводородная кислоты


Таблица 4 - Свойства 100 % серной и 100 % фтористоводородных кислот

ПоказательSHFПлотность, кг/м31830,5 (при 20 °С)955 (при 25 °С)Температура, °С:плавления 10,4 -83,4кипения 296,2 19,4Вязкость, сП (мПа · с)33,0 (при 15 °С)0,53 (при 0 °С)Поверхностное натяжение, Н/м · 55 (при 20 °С)8,6 (при 18 °С)Функция кислотности Гаммета-12,2-10,2Растворимость при 13,3 °С, % маcс:изобутана в кислоте0,103,1кислоты в изобутане?0,010,6олефинов в кислотезначительнаязначительная

Наиболее важным для жидкофазного катализа показателем кислот является растворимость в них изобутана и олефинов. Растворимость изобутана в H2SO4 невелика и приблизительно в 30 раз ниже, чем в HF. Олефины в этих кислотах растворяются достаточно хорошо и быстро. В этой связи концентрация изобутана на поверхности раздела фаз (эмульсии типа углеводород в кислоте) намного меньше концентрации олефинов, что обусловливает большую вероятность протекания реакций полимеризации олефинов. Это обстоятельство, а также высокие значения плотности, вязкости и поверхностного натяжения кислот, особенно H2SO4 обусловливает протекание реакций С-алкилирования в диффузионной области с лимитирующей стадией массопереноса реактантов к поверхности раздела фаз. Для ускорения химических реакций С-алкилирования в среде H2SO4 и HF необходимо интенсифицировать процессы перемешивания и диспергирования реакционной массы с целью увеличения поверхности раздела кислотной и углеводородной фаз.

По совокупности каталитических свойств HF более предпочтителен, чем H2SO4 Процессы фтористоводородного С-алкилирования характеризуются следующими основными преимуществами по сравнению с сернокислотным:

значительно меньший выход побочных продуктов, следовательно, более высокая селективность;

более высокие выход и качество алкилата;

значительно меньший расход кислоты (всего 0,7 кг вместо 100-160 кг H2SO4 на 1 т алкилата);

возможность проведения процесса при более высоких температурах (25…40 °С вместо 7…10 °С при сернокислотном) с обычным водяным охлаждением;

возможность применения простых реакторных устройств без движущихся и трущихся частей, обусловленная повышенной взаимной растворимостью изобутана и HF;

небольшая металлоемкость реактора (в 10…15 раз меньше, чему сернокислотного контактора, и в 25…35 раз меньше, чем у каскадногореактора);

легкая регенеруемость катализатора, что является одной из причин меньшего его расхода, и др.

Однако большая летучесть и высокая токсичность фтороводорода ограничивают его более широкое применение в процессах С-алкилирования. В отечественной нефтепереработке применяются только процессы сернокислотного С-алкилирования. На НПЗ США около половины от суммарной мощности установок приходится на долю фтористоводородного С-алкилирования.


7. Механизм и стадии превращения


С-алкилирование изоалканов олефинами в общем виде описывается уравнением



Реакции синтеза высокомолекулярных углеводородов С-алкилированием являются обратными по отношению к крекингу алканов и потому имеют сходные механизмы реагирования и относятся к одному классу катализа - кислотному. Реакции С-алкилирования протекают с выделением 85…90 кДж/моль (20…22 ккал/ моль) тепла в зависимости от вида олефина и образующегося изопарафина, поэтому термодинамически предпочтительны низкие температуры, причем уже при 100 °С и ниже ее можно считать практически необратимой. Именно в таких условиях осуществляют промышленные процессы каталитического алкилирования. Из парафинов к каталитическому алкилированию способны только изопарафины, имеющие третичный атом углерода. Олефины могут быть различными (даже этилен), но чаще всего применяют бутилены, алкилирующие изобутан с образованием изо-, по температуре кипения наиболее пригодных в качестве компонента бензинов. С-алкилирование протекает, как и каталитический крекинг, по карбений-ионному цепному механизму. Рассмотрим механизм С-алкилирования на примере реакции изобутана с бутеном-2. сернокислотный алкилирование изобутан бутилен

1.Первой стадией процесса (возникновения цепи) является протонирование олефина:



. При высоком отношении изобутан : бутен бутильный карбений-ион реагирует в основном с изобутаном с образованием третичного карбений-иона:



а. Возможна также изомеризация первичного бутильного катиона в третичный без обмена протонами:



. Образовавшийся по реакциям 2 и 2а третичный бутильный карбениевый ион вступает в реакцию с бутеном:



. Далее вторичный октильный карбкатион изомеризуется в более устойчивый третичный:



. Изомеризованные октильные карбкатионы в результате обмена протоном с изоалканом образуют целевой продукт процесса - 2,2,4-, 2,3,3- и 2,3,4-триметилпентаны:



Реакции 2, 3, 4 и 5 представляют собой звено цепи, повторение которого приводит к цепному процессу.

. Обрыв цепи происходит при передаче протона от карбкатиона к аниону кислоты:



Наряду с основными реакциями С-алкилирования изобутана бутиленами, при которых на 1 моль изобутана расходуется 1 моль олефина, в процессе протекают и побочные реакции, приводящие к образованию продуктов более легких или более тяжелых, чем целевой продукт, или к потере активности и увеличению расхода катализаторов. К таковым относят реакции деструктивного алкилирования, самоалкилирование изобутана, С-алкилирование с участием и алканов и алкенов, полимеризацию алкенов, сульфирование олефинов с образованием сложных эфиров, кислого шлама и др. Деструктивное алкилирование происходит в результате ?-распада промежуточных карбениевых ионов и приводит к образованию углеводородов -. Скорость этих реакций снижается с понижением температуры.

Полимеризация алкенов, катализируемая также кислотами, дает продукты большей молекулярной массы, чем С8. Протекание этих реакций подавляется избытком изобутана.



Реакции самоалкилирования, осуществляемые с Н-переносом, протекают при большом избытке изобутана и малой концентрации бутиленов: Эта реакция нежелательна, поскольку вызывает повышенный расход изопарафина и образование малоценного н-бутана.


Список использованной литературы


1.С. А. Ахметов, Т. П. Сериков, И. Р. Кузеев, М. И. Баязитов Технология и оборудование процессов переработки нефти и газа. С-Пб. - Недра, 2006.


ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕ

Больше работ по теме:

КОНТАКТНЫЙ EMAIL: [email protected]

Скачать реферат © 2019 | Пользовательское соглашение

Скачать      Реферат

ПРОФЕССИОНАЛЬНАЯ ПОМОЩЬ СТУДЕНТАМ