Расчет волноводной фазированной антенной решетки с вращающейся поляризацией

 

Содержание


Введение

. Конструкция антенны

. Расчет волноводной ФАР с вращающейся поляризацией

. Алгоритм расчета задания

Заключение

Список литературы


Введение


Одной из наиболее быстро развивающихся областей радиоэлектроники является техника антенн и устройств СВЧ. Уровень ее развития во многом определяет состояние телекоммуникационных систем, радиолокации, навигации, связи, радиоуправления, телеметрии, радиоастрономии. Современные достижения в технике антенн и СВЧ-устройств базируются на последних разработках электроники, полупроводниковой техники, технической кибернетики, когерентной радиооптики и т.д.

Направленность действия простейшей антенны - симметричного вибратора - невысокая. Для увеличения направленности действия уже на первых этапах развития антенной техники стали применять систему вибраторов - антенные решетки (АР). В настоящее время антенные решетки - наиболее распространенный класс антенн, элементами которых могут быть как слабонаправленные излучатели (металлические и щелевые вибраторы, волноводы, диэлектрические стержни, спирали и т.д.), так и остронаправленные антенны (зеркальные, рупорные и др.).

Фазированные антенные решетки (ФАР) - наиболее эффективные и перспективные антенные системы, позволяющие осуществлять быстрый обзор пространства, многофункциональный режим работы, комплексирование радиосредств, адаптацию к конкретной радиообстановке, предварительную обработку сверхвысокочастотных сигналов, обеспечение электромагнитной совместимости и т.п.

Излучатели в виде открытых концов волноводов широко применяют в ФАР сантиметрового диапазона благодаря простому способу возбуждения излучающих элементов питающей линией, удобству сопряжения с волноводными фазовращателями и делителями мощности, высокому уровню передаваемой мощности, малым потерям в фидерном тракте, относительной широкополосности.

К недостаткам волноводных ФАР следует отнести сравнительно большую массу и высокую стоимость отдельных ее элементов и конструкций, связанных со значительной долей процессов механической обработки высокой точности в технологическом цикле изготовления антенной решетки.

Реализация широкого сектора сканирования ФАР накладывает ограничение на расстояние между излучателями, что в ряде случаев приводит к необходимости уменьшать поперечные размеры волноводов.


1. Конструкция антенны


На рисунке представлена конструкция фрагмента АР, составленной из двух состыкованных волноводных излучателей с произвольной формой поперечного сечения и сеткой расположения элементов, характеризуемых углом а.


Рис. 1.1. Конструкция ФАР


2. Расчет волноводной ФАР с вращающейся поляризацией


1. Рассчитаем форму и линейные размеры излучающего полотна на основе заданного значения ширины ДН в главных плоскостях. Для этого воспользуемся таблицей[1,с.68]. Выбираем прямоугольную форму излучающего полотна. Подставив 2?Х,У,0,5=10° и длину волны ?maх=0,75м (линейные размеры ФАР рассчитывают для нижней точки частотного диапазона, что бы обеспечить указанные параметры в полосе частот и секторе сканирования), выбираем таблицу для прямоугольного раскрыва и получаем L = 57=4.297м, что соответствует следующим параметрам:


? = 2x\L; u = (kL/2)sin?;


Амплитудное распределение: 1-(1-?) ?2;


ДН(u):

?=0,316

2?=141


Огибающая боковых лепестков ДН: (u)=


КИП, v=0.935;


. Для дальнейшей разработки ФАР необходимо выбрать сетку расположения излучателей - выбираем гексагональную сетку расположения излучателей, которая позволяет снизить общее число элементов ФАР по отношению к прямоугольной сетке на 13% (а=60°). Кроме того увеличение площади, приходящейся на один элемент, облегчает конструктивное размещение фазирующих устройств около излучателей решетки.

Для гексагональной (а=60°) сетки расположения излучателей шаг сетки d определяется по формуле:


где =0.333


Рис.2.1. Схематичное изображение гексагонального размещения излучателей


Подставив значения, получим, что . Для исключения резкого рассогласования на границе сектора сканирования (такое рассогласование возникает в силу конечной ширины побочного главного лепестка) расчетное значение уменьшают на 6...8%. В итоге получим . Тогда при ?о=0,5м, d < 0,88м.

. С учетом полученного значения шага решетки d< 0,88м и геометрических размеров излучающего полотна L = 5,371м, размещаем на излучающем полотне N=36 излучателей. Исходя из этого площадь, занимаемая одним излучателем Sя=0,8m.

Рассчитаем мощность, излучаемую отдельным элементом ФАР, зависящую от полной излучаемой мощности P?; и закона амплитудного распределения возбуждающих сигналов по полотну решетки. Тогда при равноамплитудном возбуждении излучателе получим:


, где =10Bt, тогда = 10Вт/36=0,28Вт.


Исходя из заданного типа поляризации (вращающаяся), выбираем круглый волновод. Геометрические размеры излучателей обычно выбирают исходя из ?F, .вида поляризации и геометрии расположения элементов ФАР.

Также учитывают конструктивные ограничения на межэлементное расстояние элементов в решетке. Для волновода круглого сечения связь частоты с геометрическими размерами подчиняется условию:


,


где - скорость света в среде, заполняющей волновод,

- корень функции Бесселя m-го порядка.

Тогда = 0,053л/, тогда площадь излучателя 0,0088м.

Полученное значение является приемлемым и позволяет разместить волноводы на излучающем полотне, необходимости в уменьшении площади S, нет.

. Методы расчета характеристик волноводных ФАР отличаются уровнем моделирования электромагнитных процессов в раскрыве решетки, а, следовательно, и точностью получаемых результатов. Однако следует учитывать, что строгие электродинамические методы анализа волноводных ФАР связаны с большим объемом вычислений на ЭВМ и их применение оправдано на заключительных этапах проектирования.

Элементарная модель ФАР. Простейшую модель волноводной ФАР можно получить на основе следующих предположений:

взаимодействие излучателей существенно не влияет на характеристики ФАР, и им можно пренебречь;

распределение поля в излучающих апертурах соответствует полю основного типа волн в волноводе;

амплитудно-фазовое распределение поля в раскрыве решетки соответствует распределению амплитуд возбуждающих волн в питающих волноводах.

Для открытого конца круглого волновода радиусом R, расположенного в плоском бесконечном металлическом экране и возбуждаемого волной Ни, в главных плоскостях Н (при =0), поля излучения имеют вид:



и Е (при ф=90°):

Изменяя параметр сектора сканирования всж=40°(прибавим по 5° в каждую сторону), нормируем график поля излучения и в конечном итоге получим ДН:


Рис. 2.2. ДН круглого волновода радиусом R с волной в плоскости Н


Рис. 2.3. ДН круглого волновода радиусом R с волной в плоскости Е


Представляя ДН, взятую для определенной длины L=5,371 -см п.1 (идеализированная), для сектора в 360° получим:


Рис. 2.4. ДН для сектора 360°, идеализированная


Анализируя идеальную ДН необходимо рассчитать ширину главного лепестка 2?0=141 *?/L=141*0,5/5,371=13°.

Также на форму ДН будет влиять коэффициент эллиптичности поля излучения гэmin=9... 11 (задан в исходных данных), который целесообразно выбрать в середине заданного диапазона, следовательно гэ=10.

КНД ФАР в рамках данной модели приближенно оценивают выражением (целесообразно оценивать выражение для всего диапазона, на 5-ти длинах волн):


,


где S-площадь антенны, v-КИП.


?,мDo0,75602,31620,6941,11910,51355,2110,431832,3570,3752409,265

Потери мощности в излучателях ФАР складываются из тепловых потерь в стенках волновода и потерь на отражение ЭМП от раскрыва. Тепловые потери в волноводах принято характеризовать погонным коэффициентом затухания ?, для круглого волновода:



где = - глубина проникновения ЭМП частотой ? в стенки волновода; ?=4?*107 Гн/м - абсолютная магнитная проницаемость воздуха; ?-удельная проводимость материала волновода, См/м.

Для основного типа волны в волноводе модуль коэффициента отражения от раскрыва расcчитывают по формуле:


=(WB- W0)/(WB+W0), где


W0=120? - волновое сопротивление свободного пространства, Ом, а волновое сопротивление для основного типа волны в волноводе круглого сечения определяют по формуле:



Где ?-относительная диэлектрическая проницаемость материала, заполняющего волновод.

Тогда |Г|=(WB- W())/(WB+W())=(363-376,8)/(363+376,8)= 0,0187

Зная коэффициенты затухания волны в волноводе а и отражения от раскрыва Г, можно при условии идентичности характеристик всех элементов

ФАР и отсутствия согласующих устройств рассчитать КПД излучающей системы:



Рассмотренная элементарная модель волноводной ФАР не учитывает влияния взаимодействия излучателей на характеристики решетки. Общепринятыми считаются две модели. Одна из них применяется для расчета характеристик ФАР с большим числом излучателей (линейные размеры излучающей системы должны превышать 10...15А.). Она основана на использовании бесконечной периодической структуры излучателей. Другая модель основана на строгом решении электродинамической задачи о возбуждении АР с большим числом элементов (до 200...300).

. Модель бесконечной ФАР наиболее целесообразно использовать для больших ФАР, так как элементы центральной области в основном находятся в однородном окружении, поэтому их характеристики можно считать идентичными и совпадающими с характеристиками излучателя в составе бесконечной решетки. Это позволяет упростить решение задачи о взаимодействии волноводных излучателей, а также применять теорему перемножения для анализа характеристик ФАР. В этом случае ДН излучателя представляет собой парциальную ДН волновода, то есть элемента в составе решетки при подключении согласованных нагрузок ко всем остальным излучателям. При возбуждении одного излучателя в остальных элементах решетки наводятся токи. Суперпозиция полей излучения, создаваемых токами в апертурах активного и пассивного излучателей, формирует парциальную ДН, вид которой определяется структурой ФАР, взаимной связью излучателей и скоростью ее изменения при изменении расстояния между излучателями.

Для идеально согласованного излучателя бесконечной ФАР парциальная


ДН: F(?,?) =,


где -площадь, приходящаяся на один элемент решетки. Тогда получим:


Рис. 2.5. Парциальная ДН бесконечной ФАР


Видим, что представленная ДН является идеальной. Анализ ДН для полного сектора в 360° (рис.2.4) показывает, что в ФАР наблюдается эффект ослепления, когда ФАР практически не излучает, а вся мощность, подводимая к излучателям, отражается в фидерные линии. В апертуре волновода наряду с основным типом волны возбуждаются волны высших типов, амплитуда которых зависит от фазового распределения поля в раскрыве решетки, то есть от угла сканирования.

Появление нулей в ДН излучателя ФАР полых волноводов без диэлектрических покрытий связывается с возбуждением в излучающих апертурах высших типов волн, находящихся в слабозакритическом режиме.

Для устранения провалов в ДН возможно использование тонких металлических диафрагм, которые выполняют роль согласующих устройств. Использование таких СУ позволяет значительно сдвинуть резонансный провал в ДН излучающего элемента от направления, нормального к раскрыву решетки. Другой способ избежать резонансных явлений для круговой поляризации - заполнение волновода диэлектриком и сокращение шага решетки.

. Расчет ДН для малоэлементных ФАР проводят с применением теоремы перемножения, которая совпадает с ДН излучателя в составе бесконечной решетки: F(?,?) = g(?,?)/g(?,?)max

фазированный антенный решетка излучающий

Суммарные потери на отражение % в заданном секторе сканирования оценивают по графику на рис. 2.7.



8. Для излучателей с вращающейся поляризацией по графику на рис. 2.8 оценивают возможный уровень изменения коэффициента эллиптичности :


Рис. 2.8 Обобщенная зависимость потерь на отражение от угла сканирования в конечных волноводных ФАР По графику значение =0,81


Оценим изменение УБЛ в конечной ФАР для исходного сектора сканирования. В основе модели конечной ФАР лежит решение задачи о дифрации волн на системе открытых концов волноводов, одинаково ориентированных и расположенных произвольно в плоском идеально проводящем экране. Изменение УБЛ оценим по графику на рис. 2.9:


S3 УйАдЕ


'

Рис. 2.9. Зависимость изменения УБЛ от угла сканирования для модели конечной ФАР


По графику ?УБЛ=1,2 дБ.

. Характеристики ФАР с учетом уточнений и взаимодействия излучателей значения расчетных параметров соответствуют заданным в ТЗ, а значит, корректировка размеров излучающего полотна или сетки расположения элементов не требуется.


3. Алгоритм расчета задания



Заключение


В ходе выполнения курсовой работы была выбрана конструкция ФАР. Далее в соответствии с заданием на курсовую работу, были рассчитаны следующие параметры:

Амплитудное распределение возбуждающих волн 1 - (1 - ?)?2;

Форма излучающего полотна - прямоугольная, L = 5,371.«;

Шаг решетки d < 0,88.« при гексагональной сетке расположения;

Число излучателей N=36, мощность приходящаяся на один излучатель = 0,28Вт, а площадь приходящуюся на один элемент =0,8m;

Тип полноводного излучателя - круглый;

Рассчитана ДН, коэффициент эллиптичности выбран по графику. По графику значение гэ(?,)=0,81, коэффициент отражения |Г|= 0,0187, и КПД решетки=45%

Оценено изменение УБЛ в конечной ФАР ?УБЛ=1,2 дБ.


Содержание Введение . Конструкция антенны . Расчет волноводной ФАР с вращающейся поляризацией . Алгоритм расчета задания Заключение Список

Больше работ по теме:

КОНТАКТНЫЙ EMAIL: [email protected]

Скачать реферат © 2017 | Пользовательское соглашение

Скачать      Реферат

ПРОФЕССИОНАЛЬНАЯ ПОМОЩЬ СТУДЕНТАМ