Расчет аналоговых цифровых сигналов

 















Курсовая работа

«Цифровые системы передачи»

Расчет аналоговых цифровых сигналов



Содержание


Введение

Задание №1

Задание №2

Задание №3

Задание №4

Задание №5

Задание №6

Заключение

Список использованной литературы



Введение


Для современного промышленного производства характерно широкое внедрение автоматизированного электропривода - основы механизации и комплексной автоматизации технологических процессов. Совершенствование систем автоматизированного электропривода с использованием новейших достижений науки и техники является одним из непременных условий при решении задач всемерного повышения эффективности общественного производства, ускорения роста производительности труда и улучшения качества выпускаемой продукции.

Современный электропривод определяет собой уровень силовой электровооруженности труда и благодаря своим преимуществам по сравнению со всеми другими видами приводов является основным и главным средством автоматизации рабочих машин и производственных процессов.

Электропривод определяется как электромеханическая система, состоящая из электродвигательного, преобразовательного, передаточного и управляющего устройств, предназначенная для приведения в движение исполнительных органов рабочей машины и управления этим движением [1].

Она содержит преобразовательное устройство (ПРУ), определяемое как электротехническое устройство, преобразующее род тока, напряжение, частоту и изменяющее показатели качества электрической энергии, предназначенное для создания управляющего воздействия на электродвигательное устройство.



Задание №1


Сигнал 135775Сигнал 26380Таб.1 - таблица с исходными данными для задания №1


Выбрать частоту дискретизации широкополосного аналогового цифрового сигнала, рассчитать период дискретизации.

Рис.1 - спектр широкополосного сигнала


Частоту дискретизации широкополосного сигнала выбирают по теореме Котельникова:

Учитывая полосу расфильтровки , получаем:



Выбрать частоту дискретизации узкополосного аналогового сигнала, рассмотрев два варианта: с переносом спектра аналогового сигнала вниз по частоте и без переноса. Для варианта с переносом указать значения несущей.



Можно использовать частоту дискретизации меньше, чем

Определим частоту дискретизации методом переноса исходного спектра в область нижних частот.

Для уменьшения воспользуемся следующей формулой:



Рис.2 - спектр узкополосного сигнала (метод переноса спектра)


Определим частоту дискретизации методом последовательного приближения. "F_д можно найти без переноса спектра вниз,применяя условие демодуляции:"



0123Таб.2 - таблица неравенств для разных значений


Подберем с учетом полосы расфильтровки (10% от



Рис.3 - спектр узкополосного сигнала (метод последовательного приближения ).


Задание №2


1.150.241.5Таб.3 - таблица с исходными данными для задания №2.


Определить минимальное количество разрядов в кодовом слове, при котором обеспечивается заданная защищённость гармонического колебания с амплитудой от шумов квантования при равномерном квантовании. Построить зависимость защищённости от уровня гармонического колебания при изменении его амплитуды от до напряжения ограничения

Защищенность квантования:



Найдем минимальное число разрядов:



Построим зависимость от амплитуды входного сигнала и от :



Рис.4 - зависимости уровня сигнала от амплитуды и от уровня сигнала


Привести для наглядности характеристику помехозащищенности и характеристику компандирования для А87.6/13


Рис.5 - Характеристика защищенности от шумов квантования для характеристики А87.6/13.


Рис.6 - амплитудная характеристика неравномерного квантующего устройства


Задание №3


Тип кодера1.150.05-0.8А-87,6/13Таб.4 - исходные данные для задания №3


Для двух отсчётов аналогового сигнала с амплитудами U1 и U2 выполнить операции неравномерного квантования и кодирования, осуществляемые в нелинейном кодере с сегментированной характеристикой компрессии А-типа. Определить абсолютные и относительные величины ошибок квантования этих отсчётов и изобразить полученные в результате кодовые слова в виде последовательности токовых и бестоковых посылок в коде БВН.



Рис.7 - структурная схема кодера с нелинейным квантователем


Номер сегментаКод номера сегментаРазмер шага квантованияНижняя граница сегментаВерхняя граница сегмента000001610011632201023264301146412841008128256510116256512611032512102471116410242048Таб.5 - параметры амплитудной характеристики квантующего устройства А87,6/13.


Рис.8 - структурная схема декодера кодека с нелинейным квантованием


В соответствии с таб.3 8-и разрядное кодовое слово мгновенного значения сигнала имеет структуру PXYZABCD. В этой структуре P - старший разряд указывает полярность сигнала ("1" - положительная, "0" - отрицательная), XYZ - код номера сегмента, а ABCD - код номера шага внутри сегмента.

Найдем минимальный размер шага:



Согласно заданным значениям, при неравномерном квантовании получим два кодовых слова:



На вход кодера поступает сигнал величиной 890. В первом разряде будет сформирован "1": Р=1 (сигнал имеет положительную величину). В течение следующих трёх тактов формируются разряды кода номера сегмента (XYZ) по алгоритму, изображенному на рис.9.


Рис.9 - алгоритм кодирования номера сегмента



Код сегмента - 011 (3й сегмент): шаг квантования -

Далее осуществляем кодирование номера шага внутри сегмента методом взвешивания.


№ СегментаКод сегм.Эталоны, в Шаг квантования, Корректирующий сигнал, ОсновнойДополнительные0000084211½10011684211½2010321684221301164321684424100128643216884510125612864321616861105122561286432321671111024512256128646432Таб.6 - таблица основных и дополнительных эталонов, шагов квантования.



Полученная кодовая комбинация: 10110110

При декодировании будет восстановлено следующее значение:




Рис.10 - линейный кодер взвешивающего типа двухполярного сигнала


Рис.11 - линейный декодер взвешивающего типа для двухполярного сигнала


Рассчитаем величину шума квантования:

Абсолютная ошибка декодирования в данном случае равна величине шума квантования.

Относительная ошибка декодирования:



На вход кодера поступает сигнал величиной -14250. В первом разряде будет сформирован "0": Р=0 (сигнал имеет отрицательную величину). В течение следующих трёх тактов формируются разряды кода номера сегмента (XYZ) по алгоритму, изображенному на рис.9.



Код сегмента - 111 (7й сегмент): шаг квантования - Далее осуществляем кодирование номера шага внутри сегмента методом взвешивания.



Полученная кодовая комбинация: 01110110

При декодировании будет восстановлено следующее значение:

Рассчитаем величину шума квантования:

Абсолютная ошибка декодирования в данном случае равна величине шума квантования.

Относительная ошибка декодирования:



Рис.12 - полученные кодовые комбинации в коде БВН


Задание №4


Количество символов в синхрогруппе, Количество критических точек, Ёмкость накопителя по выходу из синхронизма, Ёмкость накопителя по входу в синхронизм, Вероятность ошибки в линейном тракте, 71,743Таб.7 - таблица с исходными данными для задания №4


Рассчитать среднее время удержания и среднее время восстановления циклового синхронизма, если в системе применён неадаптивный приёмник со скользящим поиском циклового синхросигнала. При выполнении задания считать, что система используется в первичной ЦТС с циклами передачи РСМ31.


Рис.13 - структурная схема неадаптивного приёмника циклового синхросигнала со скользящим поиском


Рис.14 - структурная схема опознавателя синхросигнала



Рис.15 - алгоритм поиска состояния синхронизма приемником со скользящим поиском

Возникновению ложной синхронизации будет соответствовать следующая вероятность:



Обычно поэтому выражение принимает вид:



Вероятность обнаружения выхода из синхросигнала:



Для обнаружения синхронизма необходимо провести ? опробований,



Найдем минимальное время выхода из синхронизма:



Найдем суммарное время поиска синхросигнала.



Найдем среднее время удерживания циклового синхронизма.



- среднее время поиска синхросигнала в зоне случайного сигнала состоящего из позиций ()

- среднее время поиска синхросигнала, в зоне синхросигнала (хотя бы одной позиции), число таких позиций равно:

Структура синхросигнала определяется его критическими точками.

Понятие критических точек - кодовая группа, длиной b символов, имеет критические точки после тех первых i символов, которые оказываются идентичными последним j-символом.

Наименьшее число критических точек, одна: bk=1 (01111…1)-на последнем символе. Максимальное число критических точек, dц.с. : bk=7 (1111…1)-на последнем символе.

Время поиска синхросигнала в зоне случайного сигнала:

Для bk=1 (одна критическая точка)



Время поиска в зоне самого синхросигнала:



Общее время поиска синхронизма:

Для bk=1 (одна критическая точка)



Для bk=7 (7 критических точек)



Найдем среднее время заполнения накопителя по выходу () и входу () синхронизм:



Определить выигрыш во времени восстановления синхронизма для случая независимой параллельной работы блока поиска синхросигнала и блока накопления по выходу из синхронизма.

Среднее время восстановления циклового синхронизма с одной критической точкой:



Среднее время восстановления циклового синхронизма с семью критическими точками:



Найдем выигрыш во времени восстановления синхронизма:



Выигрыш во времени восстановления синхронизма для случая независимой параллельной работы блока поиска синхросигнала и блока накопления по выходу из синхронизма составляет 123.973 (мс). Такой приёмник называется адаптивным, он эффективен при высоком коэффициенте ошибок.


Задание №5


110000000001101101010100Таб.8 - таблица с исходными данными для задания №5


Построить первые 20 или более позиций последней строки цикла (последнего субцикла) ЦТС ИКМ-120 с двусторонним согласованием скоростей, если заданы два последовательно переданных поля команд согласования. Считать, что принятые команды истинные. Отметить отсутствие или наличие ошибок в заданных командах.

Исходя из заданных в таб.8 полей, команды согласования по компонентным потокам следующие:

поток - отрицательное согласование

поток - нейтральная команда

поток - отрицательное согласование

поток - нейтральная команда

В соответствии с этими командами последняя строка цикла ЦТС ИКМ-120 имеет следующий вид:


Рис.16 - последняя строка цикла ЦТС ИКМ-120.


На рис.16 буквами А, В, С, D обозначены имена компонентных потоков, а числа при них - порядковые номера битов в последней строке цикла. Символы ХХХХ обозначают биты последующей команды согласования.


Задание №6


Исходный двоичный код: 11110001101100001110101100111001

Изобразить заданную последовательность нулей и единиц в кодах AMI, NRZ, HDB-3, 2B1Q, CMI в виде прямоугольных импульсов соответствующей полярности и длительности. Определить текущую цифровую сумму в конце каждого октета, а также предельное значение текущей суммы. Сделать краткое заключение по результатам определения текущей суммы для каждого кода.

AMI: "0"-отсутствие импульса, "1"-импульсы длительностью половины тактового интервала чередующейся полярности.


Рис.17 - заданная последовательность в коде AMI.


NRZ: "0"-отрицательный импульс, "1"-положительный импульс


Рис.18 - заданная последовательность в коде NRZ


2B1Q: двоичные комбинации вида 00, 01, 10, 11 заменяются импульсами с амплитудами -2, -1, +1,+2 соответственно. Длительность импульсов равна удвоенному тактовому интервалу исходной последовательности.


Рис.19 - заданная последовательность в коде 2B1Q


CMI: "1" передаются импульсами чередующейся полярности длительностью в тактовый интервал, "0" передаются биимпульсами.


Рис.20 - заданная последовательность в коде CMI


HDB-3: соответствует формированию кода AMI, но пакеты из четырех нулей заменяются комбинацией вида 000V и B00V,в которых импульс B не нарушает полярностей, а импульс V-нарушает, то есть его полярность совпадает с полярностью предыдущего импульса. В случае если до комбинации из четырех нулей было четное количество единиц в коде, то ставится комбинация B00V, в противном случае 000V.


Ввести в последовательность кода HDB-3 ошибки на указанных позициях. Произвести декодирование полученной последовательности и сравнить её с исходной.


Рис.21 - заданная последовательность в коде HDB-3 (без введенных ошибок).


Рис.22 - заданная последовательность в коде HDB-3 (с ошибкой)


КодAMI1-1000NRZ2-24042B1Q2-212012CMI1-1000HDB-311002HDB-3 с ош.10001Таб.9 - текущие цифровые суммы



Заключение


Управляющее устройство (УУ) является электротехническим устройством, предназначено для управления преобразовательным, электродвигательным и передаточным устройствами. Управляющее устройство, как правило, содержит информационную часть, получающую информацию от задатчиков (сигнал задания) и датчиков обратной связи (сигнал о состоянии привода) и в соответствии с заданными алгоритмами вырабатывает сигналы управления.

Посредством системы электропривода приводятся в движение рабочие органы технологических (производственных) машин и осуществляется управление преобразованной энергией. Под управлением здесь понимают организацию процесса преобразования энергии, обеспечивающую в статических и динамических условиях требуемые режимы работы технологических машин. Если основные функции управления выполняются без непосредственного участия человека (оператора), то управление называют автоматическим, а электропривод - автоматизированным.

Параметрами электропривода являются скорость, нагрузка, диапазон регулирования, жесткость механической характеристики и электромеханическая постоянная времени.

Для управления электроприводами применяется множество различных устройств, однако, в настоящее время наиболее рациональным кажется использование тиристорного и транзисторного управления электроприводами. Для этой цели в разомкнутой или замкнутой системах управления электроприводами используют управляемые выпрямители (для систем с двигателями постоянного тока) и регуляторы напряжения или преобразователи частоты (для систем с асинхронными двигателями).

дискретизация амплитуда квантование аналоговый сигнал



Список использованной литературы


1. Крухмалёв В.В., Гордиенко В.Н, Моченов А.Д. Цифровые системы передачи: Учебное пособие для вузов/ М.: Горячая линия - Телеком - 2010. - 352 с: ил.

. Иванов В.И., Гордиенко В.Н., Попов Г.Н. и др. Цифровые и аналоговые системы передачи. Учебное пособие для вузов/ М.: Горячая линия - Телеком - 2008. - 232 с: ил.

. Конспект лекций.



Курсовая работа «Цифровые системы передачи» Расчет аналоговых цифровых сигналов

Больше работ по теме:

КОНТАКТНЫЙ EMAIL: [email protected]

Скачать реферат © 2017 | Пользовательское соглашение

Скачать      Реферат

ПРОФЕССИОНАЛЬНАЯ ПОМОЩЬ СТУДЕНТАМ