Проектирование электропередачи большой пропускной способности

 

Белорусский национальный технический университет

Энергетический факультет

Кафедра: "Электрические системы"












Курсовая работа

Проектирование электропередачи большой пропускной способности




Выполнил: Полоник Д.И.,

студент гр. 106218

Руководитель: Старжинский А.Л.






Минск 2012


Содержание

электропередача напряжение провод фаза

Введение

. Исходные данные

. Разработка 2-х вариантов исполнения системы электропередачи

. Выбор номинального напряжения и экономически обоснованных количества линий, сечений проводов и конструкций фаз на участках системы электропередачи

. Выбор числа и мощности трансформаторов на электростанции и подстанции

. Разработка полных принципиальных схем вариантов электропередачи

. Технико-экономическое сравнение и выбор целесообразного варианта

. Расчёт параметров схемы замещения электропередачи с учётом волновых свойств линии

. Электрические расчёты характерных режимов электропередачи (нормальных режимов наибольших и наименьших нагрузок, послеаварийных режимов наибольших нагрузок)

. Расчёт технико-экономических показателей

Заключение

Литература



Введение


Важнейшим структурным элементом электрических систем служит электропередача, которая служит для объединения отдельных электрических систем, использования удаленных энергоресурсов, рациональной организации потоков топлива в стране. Увеличение мощности и дальности передачи электроэнергии является не только одной из центральных проблем электротехники, но одной из важнейших экономических проблем.

Размер капитальных затрат на строительство ЛЭП и сетей приближается к общей сумме капиталовложений в электрические станции. В этих условиях особенное значение приобретает экономичность принимаемых решений.

В данной курсовой работе необходимо разработать два варианта электропередачи, рассчитать и сравнить приведенные затраты в их сооружение, и выбрать наиболее экономичный. Для наиболее экономически выгодного варианта рассчитать характерные и аварийные режимы и в зависимости от результатов выбрать компенсирующие устройства для ввода режима в допустимую область, если это необходимо. Также в курсовой работе рассчитываются экономические показатели.


1. Исходные данные


Основная исходная информация содержится в задании по курсовой работе. Рассчитаем данные необходимые для выполнения проекта:

.Генераторы электростанции 8ЧТВВ-200;

2.Расстояние от электростанции до промежуточной ПС

.Расстояние от энергетической системы до промежуточной ПС

.Нагрузка промежуточной ПС


Рис. 1.1


. Разработка 2-х вариантов исполнения системы электропередачи


Для разработки вариантов систем электропередачи предварительно рассчитаем потоки мощности на участках [рис.1.1] без учёта потерь мощности в линии по [1, 5]:




где - максимальная нагрузка электропередачи и промежуточной ПС, - мощность собственных нужд электростанции, равная примерно

Получим:



Так как нагрузка промежуточной ПС значительно меньше мощности, выдаваемой электростанцией, то для выдачи всей мощности в систему при отключение одноцепной линии свяжем электростанцию с промежуточной ПС двухцепной ЛЭП.

Выбор номинального напряжения осуществляется на основе сопоставления вариантов технико-экономических показателей. При предварительном выборе номинального напряжения осуществим по экономическим зонам и формуле Илларионова.

Воспользуемся формулой Илларионова:


,


где, l - длина линии, км;

P - передаваемая активная мощность, МВт.

Участок от электростанции до подстанции одна цепь:




Участок от электростанции до подстанции две цепи:



Участок от подстанции до системы одна цепь:



Участок от подстанции до системы две цепи:



На первом и втором участке имеем экономически выгодное номинальное напряжение 750 или 500 кВ. В результате этого принимаем следующие предварительные варианты схем электропередачи, представленные на рис.2.1. и рис 2.2:


Рис 2.1 Электропередача на напряжении 750 кВ


Рис.2.2 Электропередача на напряжении 500 кВ


. Выбор номинального напряжения и экономически обоснованных количества линий, сечений проводов и конструкций фаз на участках системы электропередачи


По результатам выбора вариантов схем электропередачи и предварительного расчёта потокораспределения в п.2 окончательно определимся с номинальным напряжением на участках ЛЭП.

Для варианта №1 имеем:

- мощность по первому на одну цепь линий участку

- мощность по второму участку

Тогда по [2,401] напряжение для варианта №1:

на первом участке -

- на втором участке -

В таблице 3.1 представлены экономические и технические параметры одноцепных ВЛ750 кВ.


Таблица 3.1. - Экономические и технические параметры одноцепной ВЛ750 кВ.

Типы применяемых сечений, мм2Номинальное напряжение, кВ5Ч240/5675088165Ч300/667509513,75Ч400/517509710,8


Для варианта №2 имеем:

- мощность по первому на одну цепь линии участку

- мощность на одну цепь линии по второму участку

Тогда по [2,401] напряжение для варианта №2:

на первом участке-

на втором участке -

В таблице 3.2 представлены экономические и технические параметры одноцепных ВЛ500 кВ.


Таблица 3.2. - Экономические и технические параметры одноцепной ВЛ500 кВ.

Типы применяемых сечений, мм2Номинальное напряжение, кВ3Ч330/4350067,283Ч400/51500726,23Ч500/6450083,24,9

Для нахождения сечения проводов участков линии электропередачи напряжением 330 кВ и более целесообразно пользоваться методом экономических интервалов мощностей[1,6].

Для выбора более экономичного варианта будем сравнивать приведенные затраты в линию по [4,557]:



где - ток линии в режиме наибольших нагрузок, E = 0,12 - норма дисконта, - норма в долях от капитальных затрат на амортизацию и текущий ремонт для линий и соответственно, принято по [4, 535], - капитальные затраты в сооружение линии, по [3,329] найдём удельные затраты в линию, , - потери на корону,длина линии, - удельная стоимость потерь на корону, по [4,537] ,удельное активное сопротивление алюминиевого провода, - время наибольших потерь, - удельная стоимость нагрузочных потерь по [4,537],, F - площадь сечения проводника, n - число проводов в фазе.



Время наибольших потерь по [5,390]:



Имеем:



Тогда подставив , , в ,, в для трёх сечений и изменяя ток нагрузки найдём удельные затраты в участки линий для варианта №1 и №2. Результаты расчётов представим в виде графиков функции на рис.3.1, рис. 3.2, рис. 3.3брис. 3.4 (для варианта №1 З123 соответствует сечению 5Ч240/56, 5Ч300/66, 5Ч400/51 соответственно; для варианта №2 З123 соответствует сечению 3Ч330/43, 3Ч400/51, 3Ч500/64 соответственно:


Рис. 3.1 Удельные затраты в первый участок линии для варианта №1в виде функции .


Рис. 3.2 Удельные затраты во второй участок линии для варианта №1 в виде функции


Рис. 3.3 Удельные затраты в первый участок линии для варианта №2 в виде функции



Рис. 3.4 Удельные затраты во второй участок линии для варианта №2 в виде функции .


Рассчитаем токи, приходящиеся на одну цепь, в режиме наибольших нагрузок по участкам линий для каждого варианта электропередачи:

вариант №1 участок первый:



экономически целесообразное сечение по рис. 3.1 -

вариант №1 участок второй:



экономически целесообразное сечение по рис. 3.2 -

вариант №2 участок первый:



экономически целесообразное сечение по рис. 3.3 -

вариант №2 участок второй:



экономически целесообразное сечение по рис. 3.4 -

Выбранные по экономическим соображениям сечения проводов проверим по условию возникновения короны и нагреву в послеаварийных режимах[1,7].

Проверим их по длительно допустимому току нагрева, т. е. расчетный ток аварийного режима должен быть меньше наибольшего допустимого рабочего тока проводника, обусловленного его нагреванием:



где - расчетная токовая нагрузка линии для проверки проводов по нагреву. найдём как ток в послеаварийном режиме,.Рассчитаем при отключение одной линии на первом участке для первого варианта схемы электропередачис сечением :



Для сечения по [3,292] что удовлетворяет условию (3.3). Выбранное сечение, при заданной передаваемой мощности по линии, можно применять.Оставшиеся проводники проверим по допустимому току, результаты расчетов представим в виде табл. 3.2.



Таблица 3.3. - Результаты проверки проводников по длительно допустимому току нагрева

ВариантСечение проводника, мм2Допустимый ток для одного провода, кАДопустимый ток, кАРасчетный ток, кАВывод№1 уч. 15Ч240/560,6103,0501,232Удовлетв.№1 уч. 25Ч300/660,6803,40,901Удовлетв.№2 уч. 13Ч400/510,8252,4751,848Удовлетв.№2 уч. 23Ч400/510,8252,4751,351Удовлетв.

Сделаем проверку сечения проводников по короне по [2, 429]:



где - рабочее напряжение, принимаем равным номинальному, кВ; - критическое напряжение возникновения короны, кВ.

Критическое (линейное) напряжение возникновения короны можно найти по [5, 18]:



где - коэффициент шероховатости провода,

- коэффициент, учитывающий состояние погоды, при сухой и ясной погоде , при тумане, дожде, инее, мокром снеге и гололеде ;

- коэффициент, зависящий от температуры и давления воздуха, ;

- эквивалентный радиус расщепленной конструкции фазы, см;

- среднегеометрическое расстояние между фазными проводами, см; для ВЛ 750 кВ


для ВЛ 500 кВ


найдём по [4,63]:



где число проводов в расщеплённой фазе, радиус провода по: для АС 330/66, расстояние между проводами расщеплённой фазы. Проверим, удовлетворяют ли выбранные сечения условию (3.4). Сечение 5Ч300/66:



Сечение 3Ч400/51:



Сечение 5Ч240/56:



Рассчитанное критическое напряжение возникновение короны меньше номинальных напряжений, принятых для вариантов электропередачи. Опоры ЛЭП выбраны стальными, свободностоящими портального типа.


. Выбор числа и мощности трансформаторов на электростанции и подстанции


На электростанции установлено восемь генераторов генератора ТВВ-200-2АУ3. Паспортные данные по [6,76] в таблице 4.1:


Таблица 4.1. - Параметры генератора

МаркаТВВ-200-2АУ32000,8515,75

По [1, 9] электростанцию будем проектировать с укрупнёнными энергоблоками. Номинальную мощность повышающего трансформатора определим по [1, 9]:



где суммарная мощность выдаваемая генераторами в сеть;

число трансформаторов, исходя из паспортных данных стандартных трансформаторов и суммарной мощности генераторов примем для первого варианта однофазных трансформаторов, для второго - трехфазных.

номинальный коэффициент мощности генератора,примем из таблицы 4.1

Тогда



Выбираем по [6, 161] 12 однофазных трансформаторов ОРЦ - 417000/750 для варианта №1, паспортные данные приведены в таблице 4.2; 8 трансформаторов ТДЦ - 250000/500 для варианта №2, паспортные данные приведены в таблице 4.3.


Таблица 4.2.- Параметры трансформатора

МаркаОРЦ - 417000/75041778720400800

Таблица 4.3. - Параметры трансформатора

МаркаТДЦ - 400000/50040052520350800

Произведём выбор трансформаторов промежуточной подстанции. На промежуточной ПС рекомендуется [1,10] устанавливать два трансформатора. Рассчитаем полную мощность нагрузки промежуточной подстанции в режиме наибольших нагрузок.

электропередача напряжение провод фаза


Выбираем по [6, 161] на промежуточную ПС 6 однофазных автотрансформаторов АОДЦТН - 267000/750/220 для варианта №1, паспортные данные приведены в таблице 4.3; 2 автотрансформатора АТДЦТН - 250000/500/110 для варианта №2, паспортные данные приведены в таблице 4.4.


Таблица 4.3. - Параметры трансформатора

МаркаАОДЦТН - 267000/750/22026775023010,5200600


Таблица 4.4. - Параметры трансформатора

МаркаАТДЦТН - 250000/500/11025050012111230640

Произведём выбор трансформаторов на ПС приёмной энергосистемы. Рассчитаем полную мощность на втором участке электропередачи.



По [1, 10] номинальная мощность одного трансформатора:



Выбираем по [6, 161] на ПС приёмной энергосистемы 6 однофазных автотрансформаторов АОДЦТН - 267000/750/220 для варианта №1, паспортные данные приведены в таблице 4.5; 6 однофазных автотрансформаторов АОДЦТН - 267000/500/220 для варианта №2, паспортные данные приведены в таблице 4.4.


Таблица 4.5. - Параметры трансформатора

МаркаАОДЦТН - 267000/750/22026775023010,5200600

Таблица 4.6. - Параметры трансформатора

МаркаАОДЦТН - 267000/500/22026750023010,570320


5. Разработка полных принципиальных схем вариантов электропередачи


На электростанции будем использовать укрупнённые энергоблоки, схему ОРУ станции принимаем по [1,10] трансформатор-шины с присоединением линий через два выключателя для первого варианта, для второго используем полуторную схему.

Схему ОРУ промежуточной ПС на 750 кВ выбираем трансформатор-шины с присоединением линий через два выключателя.

Схему ОРУ промежуточной ПС на 500 кВ выбираем по [1,10 ]полтора выключателя на присоединение.

Схему ОРУ ПС приёмной энергосистемы для первого варианта выбираем трансформатор-шины с присоединением линий через два выключателя, для второго варианта полуторную схему.

Число присоединений на стороне СН промежуточной подстанции для варианта №1:



Число присоединений на стороне СН промежуточной подстанции для варианта №2:



Число присоединений на стороне НН промежуточной подстанции:



Примеры принципиальных схем электропередач приведены для варианта №1 на рис.5.1, для варианта №2 - на рис.5.2.


Рис. 5.1


Рис. 5.2


. Технико-экономическое сравнение и выбор целесообразного варианта


Выбор целесообразного варианта выполнения электропередачи производится по критерию минимума приведенных затрат на передачу электрической энергии [1,11]:




где норма дисконта; - норма в долях от капитальных затрат на амортизацию и текущий ремонт для линий и соответственно; - норма в долях от капитальных затрат на амортизацию и текущий ремонт для электрооборудования 220 кВ и выше, принято по [4, 535],капитальные вложения на строительство электропередачи; поток мощност; активное сопротивление элемента электропередачи;длина участка линии;время наибольших потерь электрической энергии;удельная стоимость нагрузочных потерь и потерь холостого хода;потери энергии холостого хода ;вероятный ущерб от недоотпуска электроэнергии потребителям при аварийных и плановых ремонтах элементов электропередачи,

Из пункта 3:



Потери энергии в трансформаторах и линии рассчитаем по [1,12]:



где потери энергии в трансформаторах электростанции, промежуточной ПС и приёмной энергосиcтемы;потери на первом и втором участках линии электропередачи.




где соответственно количество трансформаторов, установленных на промежуточной электростанции, промежуточной ПС и приёмной системе; номинальные мощности соответственно обмоток ВН, СН, НН трансформаторов промежуточной ПС; то же трансформаторов системы; доли нагрузки, приходящейся на сторону среднего и низшего напряжения трансформаторов промежуточной ПС и приёмной системы; время работы трансформатора в году, 8760 ч; потери мощности холостого хода и короткого замыкания по [4,706], потери энергии в линии на корону, из [3,279].

Произведём расчёт потерь электрической энергии для варианта №1.




Для автотрансформаторов посчитаем только потери при перетоке мощности с обмотки высшего напряжения на обмотку среднего напряжения.



Нагрузочные потери, потери энергии холостого хода . Для варианта №2 расчёты аналогичные, приведём только результаты:



Нагрузочные потери, потери энергии холостого хода .

Найдём приведенные затраты в сооружение электропередачи по варианту №1 по [3,334].

Капитальные затраты в строительство электропередачи сведены в таблицу 6.1


Таблица 6.1. - Капитальные затраты в строительство электропередачи по варианту №1

ОбъектОборудованиеКоличество, штСтоимость единицы, т.руб.Всего, т.руб.ЭС3xОРЦ-417000/750419807920Ячейка 750 кВ137009100ПС3xАОДЦТН-267000217503500Ячейка 750 кВ117007700Ячейка 220 кВ642252РУ 10 кВ13565Система3xАОДЦТН-267000217503500Ячейка 750 кВ77004900Всего36937ОбъектОборудованиеКоличество, кмСтоимость единицы, т.руб. /кмВсего, т.руб.Линия 15xАС 240/562x60088105600Линия 25xАС 300/666509561750Всего167350

Найдём приведенные затраты в сооружение электропередачи по варианту №2 по [3,334].

Капитальные затраты в строительство электропередачи сведены в таблицу 6.2


Таблица 6.2. - Капитальные затраты в строительство электропередачи по варианту №2

ОбъектОборудованиеКоличество, штСтоимость единицы, т.руб.Всего, т.руб.ЭСТДЦ-250000/50084003200Ячейка 500 кВ152603900ПСАТДЦНТ-250000/500/1102453906Ячейка 500 кВ92602340Ячейка 110 кВ1542630РУ 10 кВ13565Система3xАОДЦТН-267000212602520Ячейка 500 кВ62601560Всего15121ОбъектОборудованиеКоличество, кмСтоимость единицы, т.руб./кмВсего, т.руб.Линия 13xАС 400/512x6007286400Линия 23xАС 400/512x6507293600Всего180000

Вероятный годовой ущерб от перерывов электроснабжения определится:


,


где , - вероятные ущербы от аварийных и плановых простоев.

Составляющие общего ущерба определяются по формулам:



где- максимальная нагрузка нормального режима;, - коэффициенты ограничения потребителей при аварийных (вынужденных) и плановых простоях в i-м режиме;, - коэффициенты вынужденного и планового простоя в i-м режиме; , - удельные ущербы от аварийных и плановых ограничений, тыс. руб./кВт. год; n- число рассматриваемых аварийных (плановых) режимов.

Коэффициенты ограничения потребителей:



где, - вынужденно отключаемая нагрузка в аварийных и плановых режимах.

Коэффициенты вынужденного и планового простоев:



где- параметр потока отказов i-го элемента электропередачи (табл. 8.4 /3/); - среднее время восстановления. i-го элемента электропередачи (табл. 8.6 /3/); - средняя частота плановых простоев i-го элемента (табл. 8.4 /3/); - средняя продолжительность планового простоя i-го элемента (табл. 8.3 /3/).

Учитывая малую вероятность одновременного отключения всех трансформаторов подстанции, в курсовом проекте можно ограничиться учетом только вероятностей отключения участков линии электропередачи.

Для вычисления ущербов необходимо рассмотреть все режимы, в которых возможны погашения (ограничения) потребителей.

Для первого варианта схемы могут быть рассмотрены следующие варианты:

1.Отключение одной цепи Л1. Здесь дефицит мощности будет связан с ограничениями в передаче мощности по другой параллельной цепи. Однако при расчете послеаварийного режима вторая цепь сможет пропустить всю мощность от электростанции.

2.Отключение Л2. В данном случае часть мощности в систему не выдается. Можно принять, что дефицит составляет 0,4…0,6 от мощности, передаваемой по линии Л2 в максимальном режиме. При плановом отключении дефицит мощности можно принять равным.



Для второго варианта схемы могут быть рассмотрены следующие варианты:

1.Отключение одной цепи Л1. Здесь дефицит мощности будет связан с ограничениями в передаче мощности по другой параллельной цепи. Однако при расчете послеаварийного режима вторая цепь сможет пропустить всю мощность от электростанции.

2.Отключение одной цепи Л2. Здесь дефицит мощности будет связан с ограничениями в передаче мощности по другой параллельной цепи. Однако при расчете послеаварийного режима вторая цепь сможет пропустить всю мощность от электростанции.

Найдём приведенные затраты в электропередачу по варианту №1:



Найдём приведенные затраты в электропередачу по варианту №2:




Наиболее выгодным вариантом оказывается второй вариант - электропередача на напряжении 500 кВ. В дальнейшем будем рассматривать только вариант схемы №2.


. Расчёт параметров схемы замещения электропередачи с учётом волновых свойств линии


По [1,7] при длине линии более 300 км её параметры будут равны:



где поправочные коэффициенты зависящие от удельных параметров линии и её длины, по [4,682]по [1,7] найдём удельную активную проводимость линии:



Рассчитаем коэффициенты для участка 1 :



Рассчитаем параметры схемы замещения первого участка электропередачи с учётом волновых свойств линии:



Для второго участка расчёты аналогичны.

Рассчитаем параметры схемы замещения первого участка электропередачи с учётом волновых свойств линии:



Параметры схемы замещения второго участка электропередачи с учётом волновых свойств линии:




8. Электрические расчёты характерных режимов электропередачи (нормальных режимов наибольших и наименьших нагрузок, послеаварийных режимов наибольших нагрузок)


Определим диапазон регулирования реактивной мощности генераторами электростанции по [1,21] и [1,22]:



где располагаемая к выдаче в электропередачу мощность на шинах высшего напряжения, максимально возможная к выдаче мощность генераторов при максимальной активной мощности, нагрузочные потери мощности в повышающих трансформаторах при максимальной активной и реактивной мощности генераторов, потери х.х. в повышающих трансформаторах.



Потребляемая станцией реактивная мощность:



где максимально возможная потребляемая генераторами мощность по [1,22].




Диапазон регулирования реактивной мощности генераторами электростанции:



Рассчитаем характерные режимы электропередачи (нормальные режимы наибольших и наименьших нагрузок, послеаварийные режимы наибольших нагрузок) в программе Rastr.

Исходные данные по узлам в режиме наибольших нагрузок в таблице 8.1.


Таблица 8.1. - Исходные данные по узлам


Исходные данные по ветвям в нормальном режиме в таблице 8.2.


Таблица 8.2. - Исходные данные по ветвям


Расчёт режима наибольших нагрузок в таблице 8.3.



Таблица 8.3. - Результаты расчета режима


В режиме наибольших нагрузок для существования режима необходимо подключать на промежуточной ПС компенсирующее устройство мощностью


.


Исходные данные по узлам в режиме наименьших нагрузок в таблице 8.4.


Таблица 8.4. - Исходные данные по узлам


Расчёт режима наименьших нагрузок в таблице 8.5.



Таблица 8.5. - Результаты расчета режима


В режиме наименьших нагрузок для существования режима необходимо подключать на промежуточной ПС компенсирующее устройство мощностью .

Схемы расчета режима наибольших и наименьших нагрузок соответственно приведены на рисунках 8.1 и 8.2.


Рис. 8.1 Режим наибольших нагрузок


Рис. 8.2 Режим наименьших нагрузок


Исходные данные по узлам для расчёта аварийного режима в таблице 8.6 (отключена одна линия на участке ЭС-ПС).


Таблица 8.6. - Исходные данные по узлам


Исходные данные по ветвям в аварийном режиме в таблице 8.7 (отключена одна линия на участке ЭС-ПС).


Таблица 8.7. - Исходные данные по ветвям


Расчёт аварийного режима в таблице 8.8 (отключена одна линия на участке ЭС-ПС).


Таблица 8.8. - Результаты расчета режима


В аварийном режиме при отключёнии линии на участке ЭС-ПС для существования режима необходимо подключать на промежуточной ПС компенсирующее устройство мощностью



..


Исходные данные по узлам для расчёта аварийного режима в таблице 8.9 (отключёна одна линия на участке ПС-С).


Таблица 8.9. - Исходные данные по узлам


Исходные данные по ветвям в аварийном режиме в таблице 8.10 (отключена одна линия на участке ПС-С).


Таблица 8.10. - Исходные данные по ветвям


Расчёт аварийного режима в таблице 8.11 (отключена одна линия на участке ПС-С).


Таблица 8.11. - Результаты расчета режима


В аварийном режиме при отключёнии линии на участке ПС-С для существования режима необходимо подключать на промежуточной ПС компенсирующее устройство мощностью


.


Схемы расчета режима аварийных режимов приведены на рисунках 8.3 и8.4.


Рис. 8.3 Аварийные режим: отключена одна цепь линии на участке ЭС-ПС


Рис. 8.4Аварийный режим: отключена линия на участке ПС-С


Произведём ручной расчёт режима наибольших нагрузок. Для более быстрого схождения итерационного процесса зададимся напряжения в узлах такими же как и в результате расчёта режима в программе Rastr.

Напряжение на шинах системы станции ПС .

Для определения потока мощности в начале первого участка решим квадратное уравнение [1,17, (4.1)]. Решение:



где равно:



Расчёт по схеме рис. 8.5 выполнен в математическом пакете Mathcad и приведен ниже:




Рис. 8.5


Напряжение на ПС получили кВ. Для полученных режимов построим векторные диаграммы. На примере расчета строим векторную диаграмму, расчеты которой выполняем в Mathcad. Построенные диаграммы приведены на рисунках 8.6-8.9.





9. Расчёт технико-экономических показателей


По [4,476] определим технико-экономические показатели такие, как приведенные затраты , стоимость передачи , себестоимость передачи.

Приведенные затраты найдём как и в пункте 6, только в капзатраты оборудование добавим стоимость синхронного компенсатора 2ЧКСВБ-320 4800 т. рублей. Потери электроэнергии в синхронном компенсаторе (далее - СК) или генераторе, переведенном в режим СК, определяются по формуле:


, кВт.ч,


где, ?Q-коэффициент максимальной нагрузки СК в базовом периоде;

?Pном - потери мощности в режиме номинальной загрузки СК в соответствии с паспортными данными, кВт.



Приведенные затраты:



Годовые эксплуатационные расходы по [1,43]:



Стоимость передачи электрической энергии:



Себестоимость передачи электрической энергии:



Сведём результаты в таблицу 9.1


Таблица 9.1. - Результаты расчета

ПоказательВеличинаЕдиница измерения199921


Найдём КПД передачи из расчёта режима наибольших нагрузок по [1,44]:



Критериальная длина ЛЭП по [7,174]:



Экономические КПД по [9,174]для участков:




Заключение


В данной курсовой работе были разработаны два варианта электропередачи согласно заданию. При экономическом сравнение вариантов наиболее экономичным оказался вариант электропередачи на номинальном напряжении 500 кВ. После анализа расчётов нормальных и аварийных режимов по программе Rastr оказалось, что режим не балансируется, поэтому на ПС было установлено 2 КУ КСВБ-320 мощностью

Параметры схемы были рассчитаны с учётом волновых свойств линии.

Для экономичного варианта электропередачи были рассчитаны критериальные параметры и технико-экономические показатели в ценах 1985 года по [3].

Стоимость передачи электрической энергии, себестоимость передачи электрической энергии:


Литература


1. Электропередачи: Методическое пособие к курсовому проекту для студ. спец. 10.02 - "Электроэнергетические системы и сети"/ Г.Е. Поспелов, М.А. Короткевич, В.Т. Федин, Л.Л. Червинский. - Мн.: БГПА, 1994. - 47с.

. Электрические системы и сети: Учебник/ Г.Е. Поспелов, В.Т. Федин, П.В. Лычев - Мн.: УП "Технопринт", 2004. - 720 с.

. Справочник по проектированию электроэнергетических систем. Под ред. С.С. Рокотяна и И.М. Шапиро. Изд. 3-е перераб. и доп. М.: Энергия, 1985.-349 с.

. Передача и распределение электрической энергии: Учебное пособие/А.А. Герасименко, В.Т. Федин. - Ростов-н/Д:Феникс; Красноярск: Издательские проекты, 2006. - 720.(Серия "Высшее образование").

. Основы проектирования электрических сетей электроэнергетических систем: Учебное пособие к курсовому проекту по дисциплине " Электрические системы и сети"/ Сыч Н.М., Федин В.Т. - Мн.: УП "Технопринт", 2000. - 54 с..

6. Электрическая часть электростанции и подстанций: Справочные материалы для курсового и дипломного проектирования: Учеб. Пособие для вузов. - 4-е изд., перераб. и доп. - М.: Энергоатомиздат, 1989. - 608 с.:ил.

7. Передача энергии и электропередачи: Учеб.пособие для студентов энергет. специальностей вузов/ Г.Е.Поспелов, В.Т.Федин. - Мн.: Адукацiя и выхаванне, 2003. -544 с.: ил.



Белорусский национальный технический университет Энергетический факультет Кафедра: "Электрические системы"

Больше работ по теме:

КОНТАКТНЫЙ EMAIL: [email protected]

Скачать реферат © 2017 | Пользовательское соглашение

Скачать      Реферат

ПРОФЕССИОНАЛЬНАЯ ПОМОЩЬ СТУДЕНТАМ