Принципы работы и поверка электродинамических и электромагнитных средств измерений

 














Курсовая работа

Принципы работы и поверка электродинамических и электромагнитных средств измерений


Введение


Метрология - наука об измерениях, о методах и средствах обеспечения их единства и способах достижения требуемой точности. Под единством измерений понимают такое их состояние, при котором результаты измерений выражены в узаконенных единицах величин, и погрешности измерений не выходят за установленные границы с заданной вероятностью.

Метрология изучает широкий круг вопросов, связанных как с теоретическими проблемами (теоретическая метрология), так и с задачами практики (практическая метрология). К основным разделам метрологии относятся: общая теория измерений, единицы физических величин и их системы, методы и средства измерений физических величин, методы оценки точности измерений, методы эталонирования. На основании теоретических положений метрологии обоснованы и стандартизированы практические рекомендации, регламентирующие все стороны измерений (законодательная и метрология).

Измерениями называют совокупность операций по применению технического средства, хранящего единицу физической ветчины, которые обеспечивают нахождение соотношения измеряемой величины с ее единицей и получение значения этой величины. Таким образом, измерение можно определить как экспериментальное нахождение отношения измеряемой физической ветчины к другой однородной величине, принятой за единицу.

Физической величиной называют свойство, общее в качественном отношении для многих объектов, но в количественном отношении индивидуальное для каждого. Например, физическими ветчинами являются длина, электрический ток, напряжение, индуктивность. Количественное содержание физической величины, характеризующее конкретный объект, называют размером физической величины (размером величины). Оценку физической величины в виде некоторого числа принятых для нее единиц называют значением физической величины.

Для организаций, разрабатывающих, производящих или применяющих СИ, одним из аспектов обеспечения качества их продукции является наличие данных о метрологических характеристик СИ, установленных с необходимой для потребителей точностью.

MX СИ необходимы для оценки пригодности СИ к измерениям в известном диапазоне с известной точностью, а также для обеспечения:

.возможности установления точности измерений;

.достижения взаимозаменяемости СИ, сравнения СИ между собой и выбора нужных СИ по точности и другим характеристикам;

.определения погрешностей измерительных систем и установок на основе MX входящих в них СИ.

Под нормированием понимается установление границ на допустимые отклонения реальных метрологических характеристик средств измерений от их номинальных значений. Только посредством нормирования метрологических характеристик можно добиться их взаимозаменяемости и обеспечить единство измерений в государстве.


1. Средства измерений


1.1 Понятие средства измерений. Виды средств измерений

поверка метрологический омметр амперметр

Средство измерения (СИ) - это техническое средство, предназначенное для измерений, имеющее нормированные метрологические характеристики, воспроизводящее и / или хранящее единицу физической величины (ФВ), размер которой принимается неизменным (в пределах установленной погрешности) в течение известного интервала времени. Под метрологическими характеристиками (MX) понимают такие характеристики СИ, которые позволяют судить об их пригодности для измерений в известном диапазоне с известной точностью. СИ - это техническая основа метрологического обеспечения.

Классификация средств измерений (СИ):

1) по степеням универсальности (универсальные, не универсальные, специализированные);

) по виду оценки параметров (допустимые (пороговые), измерительные, комбинированные);

) по назначению (контрольные, испытательные, прогнозирующие)

) по измеряемым величинам (механические, акустические, электрические, электронные, пневматические);

) по РМГ 29-99 (меры, измерительные преобразователи, измерительные установки, измерительные приборы, измерительные системы);

) по связи с объектом (внешние, внутренние);

) по режиму работы (динамические, статические);

) по характеру использования (лабораторные, технические);

) по виду регистрирующего сигнала (показывающие, регистрирующие, самописцы, печатающие);

) по виду выходного сигнала (аналоговые, цифровые, аналого-цифровые);

) по степени автоматизации (неавтоматизированные, автоматизированные, автоматические);

) по виду преобразований сигнала (прямого действия, сравнения, промежуточные, масштабные);

) по виду приёма передачи информации (одноканальные, многоканальные);

) по виду шкалы (с равномерной шкалой, с неравномерной шкалой, с нулевой отметкой внутри шкалы, с нулевой отметкой на краю или вне шкалы);

) по поверочной схеме (рабочие, образцовые, рабочие эталоны);

Средства измерения - это техническая основа метрологического обеспечения.

Pазнообразие СИ подразделяется на следующие классы: меры, измерительные приборы, измерительные установки, измерительные системы и измерительные преобразователи (датчики).

Меры - это СИ, воспроизводящие или хранящие физическую величину заданного размера. Меры могут быть однозначными, воспроизводящими одно значение физической величины (гиря, калибр на заданный размер, образцы твердости, шероховатости, катушка сопротивления, нормальный элемент, воспроизводящий значение ЭДС), и многозначными - для воспроизведения плавно или дискретно ряда значений одной и той же физической величины (измерительный конденсатор переменной емкости, набор конечных мер, магазин емкостей, индуктивности и сопротивления, измерительные линейки).

Измерительный прибор - СИ, предназначенное для переработки сигнала измерительной информации в другие, доступные для непосредственного восприятия наблюдателем формы. Различают приборы прямого действия (амперметры, вольтметры, манометры) и приборы сравнения (компараторы).

Измерительная установка - совокупность функционально объединенных СИ и вспомогательных устройств, расположенных в одном месте. Например, поверочные установки, установки для испытания электротехнических, магнитных и других материалов. Измерительная установка позволяет предусмотреть определенный метод измерения и заранее оценить погрешность измерения.

Измерительная система - это комплекс СИ и вспомогательных устройств с компонентами связи (проводные, телевизионные и др.), предназначенный для выработки сигналов измерительной информации в форме, удобной для автоматической обработки, передачи и / или использования в автоматических системах управления.

В отличие от измерительных установок, предусматривающих изменения режима и условий функционирования, измерительная система не воздействует на режимы работы, а предназначена только для сбора и / или хранения информации.

Все большую роль в измерениях приобретают измерительные преобразователи (датчики), предназначенные для преобразования измерительной информации в форму, удобную для передачи, дальнейшего преобразования, обработки и хранения. Это термопары, измерительные трансформаторы и усилители, преобразователи давления. По месту, занимаемому в измерительной цепи, они делятся на первичные, промежуточные и т.п. Конструктивно они выполняются либо отдельными блоками, либо составной частью СИ. Не следует отождествлять измерительные преобразователи с преобразовательными элементами. Последние не имеют метрологических характеристик, как, например, трансформатор тока или напряжения.

Конструктивно они, как правило, оформлены в самостоятельное средство измерений, встраиваемое в технические устройства. Иногда датчики являются составной частью измерительного прибора.

Все средства измерений можно классифицировать различным образом, в частности:

. По характеру измеряемых физических величин (СИ электрических, механических, радиофизических величин и т.д.);

. По типу регистрирующего устройства (аналоговые, цифровые средства измерений).

Однако наибольшее значение имеет классификация СИ по метрологическим характеристикам. В соответствии с ней все средства измерений подразделяются на рабочие, образцовые и эталоны. К рабочим относятся средства измерений, не предназначенные для воспроизведения и хранения единиц физических величин с целью передачи их размеров другим средствам измерений. К образцовым средствам измерений относятся меры, измерительные приборы (системы) или измерительные преобразователи, применяемые для передачи размеров единиц другим средствам измерений. Эталоны представляют собой средства измерений (обычно комплекс средств измерений), предназначенные для воспроизведения и (или) хранения единицы физической величины с целью передачи ее размера образцовым средствам измерений высшей точности. Эталон должен быть официально утвержден.

Всем средствам измерений присущи основные свойства: метрологические, эксплуатационные, информационные и др. Наиболее важными являются метрологические свойства (характеристики).


1.2 Понятие погрешностей средств измерений. Классификация погрешностей


Погрешность средства измерения - отклонение показания средства измерения от истинного (действительного) значения измеряемой величины. Оно характеризует точность результатов измерений, проводимых данным средством. Эти два понятия во многом близки друг к другу и классифицируются по одинаковым признакам.

Абсолютная погрешность СИ - разность между показательным прибором и действительным значением измеряемой величины. В качестве действительного значения измеряемой величины принимают показания эталонного средства измерения:


, (1)


где Х п - показание поверяемого средства измерения; Х эт - показание эталонного средства измерения (действительное значение измеряемой величины).

Относительная погрешность СИ определяется как отношение абсолютной погрешности СИ к действительному значению измеряемой величин


(2)


где - абсолютная погрешность СИ; Хэт - показание эталонного средства измерения.

Абсолютная погрешность выражается в единицах измеряемой физической величины и может быть задана:

1. Одним числом (линия 1 на рис. 1): А = ±а;

.В виде линейной зависимости (линии 2 и 3): А = ±bх; А = ±(а + bх);

.В виде функции Д=f(х) или графика, таблицы.


Рисунок 1 - Формирование аддитивной и мультипликативной составляющих погрешности


Если значение погрешности не изменяется во всем диапазоне измерения (линия 1), например, из-за трения в опорах, то такая погрешность называется аддитивной (или погрешностью нуля).

Если погрешность изменяется пропорционально измеряемой величине (линия 2), то ее называют мультипликативной.

В большинстве случаев аддитивная и мультипликативная составляющие присутствуют одновременно (линия 3).

Приведенная погрешность средств измерений - отношение погрешности измерительного прибора к нормирующему значению:


(3)


где ? Х - абсолютная погрешность СИ; Хнорм - некоторое нормирующее значение.

Эта формула показывает, что для одного и того же СИ д уменьшается с ростом хд приближается к ? при хд ? 0. То есть при измерении на начальном участке шкалы с начальной нулевой отметкой погрешности измерения могут быть сколь угодно велики. Поэтому в метрологии существует принцип запрета измерений на таких участках шкалы СИ. Выбор вида нормирования погрешности зависит от характера ее изменения по диапазону измерения. Если СИ имеет только аддитивную составляющую (или мультипликативной можно пренебречь), то предел допускаемой абсолютной погрешности А = const, а д будет изменяться по гиперболе (рисунок 1.4). В этом случае удобнее нормировать абсолютную Д = ±а или приведенную погрешность Д= ±(а/х) = const.

В СИ с преобладающей мультипликативной погрешностью удобнее нормировать предел допустимой относительной погрешности д = ±с = const (смотри рисунок 1.4). Таким способом нормируют счетчики электроэнергии, мосты постоянного и переменного тока.


(4)


Для нормирования погрешностей с аддитивной и мультипликативной составляющими (смотри рисунок 1.4) принята более сложная зависимость.

Чтобы связать д с конечным значением хк шкалы, к последнему уравнению прибавим и вычтем величину а/хк, (здесь хк - больший по модулю из пределов измерений). Тогда


(5)


Обозначим и . Отсюда:


(6)

Из формулы следует, что минимальное значение дmin будет при х = хк. Однако на практике имеют место и другие случаи получения д. Поэтому вводят значение дmin, соответствующее х0, тогда


(7)


Здесь значение д возрастает как при убывании, так и при возрастании величины х относительно х0.

Физически величина с есть погрешность в начале диапазона дн = с, величина d - погрешность в конце диапазона дк = с измерения. т.е.


, d = дк = дн + дм, (8)


где Д0 - аддитивная составляющая погрешности; хк - предел измерения; дм - мультипликативная составляющая погрешности; Д(х) - значение абсолютной погрешности, возрастающей прямо пропорционально текущему значению х измеряемой величины.


v

Рисунок 2 - Нормирование погрешностей с аддитивной и мультипликативной составляющими

В качестве нормирующего значения могут быть приняты верхний, нижний пределы измерения, диапазон измерения, длина шкалы и т.д.

Также различают статистическую погрешность средств измерений, динамическую погрешность, погрешность средств измерений в динамическом режиме, систематическую погрешность средств измерений, случайную погрешность средств измерений, основную погрешность средств измерений, дополнительную погрешность средств измерений.

Статическая погрешность СИ - погрешность средства измерения, используемого для измерения постоянной величины.

Погрешность СИ в динамическом режиме - погрешность средства измерения, используемая для измерения переменной во времени величины.

Динамическая погрешность СИ - разность между погрешностью средства измерения в динамическом режиме и его статической погрешностью, соответствующей значению величины в данный момент времени.

Систематическая погрешность СИ - это составляющая погрешности измерения, которая остаётся постоянной или закономерно изменяется при повторных измерениях.

К систематическим погрешностям измерений можно отнести те составляющие, для которых можно считать доказанным наличие функциональных связей с вызывающими их аргументами. Для них можно предложить следующее определение: систематическая погрешность - закономерно изменяющаяся составляющая погрешности измерений.

Формально это записывается в виде:


, (9)


где - аргументы, вызывающие систематическую погрешность. Главной особенностью систематической погрешности является принципиальная возможность ее выявления, прогнозирования и однозначной оценки, если удается узнать вид функции и значения аргументов.

Случайная погрешность СИ - составляющая погрешности средства измерения, изменяющаяся случайным образом.

Основная погрешность - погрешность средства измерения, используемого в нормальных условиях.

Дополнительная погрешность меры - изменение погрешности меры вследствие изменения ее действительного значения, вызванного отклонением одной из влияющих величин от нормального значения или выходом за пределы нормальной области значений.

Предел допускаемой погрешности СИ - наибольшая погрешность средства измерения, при которой оно может быть признана годной к применению.

Точность СИ - качество СИ, отражающее близость к нулю его систематических погрешностей.

Правильность СИ - качество СИ, отражающее близость к нулю его систематических погрешностей.

Сходимость показания СИ - качество СИ, отражающее близость к нулю его случайных погрешностей.

Класс точности СИ - обобщенная характеристика СИ, определяемая пределами допускаемых основных и дополнительных погрешностей, а также другими свойствами СИ, влияющими на точность, значение которых устанавливают на отдельные виды СИ.

Средства измерений можно использовать только тогда, когда известны их метрологические характеристики. Обычно указываются номинальные значения параметров средств измерений и допускаемые отклонения от них. Сведения о метрологических характеристиках приводятся в технической документации на средства измерений или указываются на них самих. Как правило, реальные метрологические характеристики имеют отклонения от их номинальных значений. Поэтому устанавливают границы для отклонений реальных метрологических характеристик от номинальных значений - нормируют их. Нормирование метрологических характеристик средств измерений позволяет избежать произвольного установления их характеристик разработчиками.помощью нормируемых метрологических характеристик решаются следующие основные задачи:

. Оценка инструментальной составляющей погрешности измерений.

. Выбор СИ по заданным характеристикам их погрешностей.

. Сравнение СИ различных типов по МХ.

. Разработка сложных измерительных систем (ИС).

. Оценка погрешности ИС.

Необходимо отметить, что погрешность СИ является только одной из составляющих погрешности результата измерений, получаемого с использованием данного СИ. Другими составляющими являются погрешность метода измерений и погрешность оператора, проводящего измерения.

Погрешности средств измерений могут быть обусловлены различными причинами:

.неидеальностью свойств средства измерений, то есть отличием его реальной функции преобразования от номинальной;

.воздействием влияющих величин на свойства средств измерений;

.взаимодействием средства измерений с объектом измерений изменением значения измеряемой величины вследствие воздействия средства измерения;

.методами обработки измерительной информации, в том числе с помощью средств вычислительной техники.

Погрешности конкретных экземпляров СИ устанавливают только для эталонов, для остальных СИ вся информация об их погрешностях представляет собой те нормы, которые для них установлены. Нормирование погрешностей изложено в Рекомендации 34 МОЗМ «Классы точности средств измерений» и в ГОСТ 8.401-80 «Классы точности средств измерений. Общие требования».

В основе нормирования погрешностей средств измерений лежат следующие основные положения.

. В качестве норм указывают пределы допускаемых погрешностей, включающие в себя систематические и случайные составляющие.

Под пределом допускаемой погрешности понимается наибольшее значение погрешности средства измерений, при котором оно еще признается годным к применению. Обычно устанавливают пределы, т.е. зоны, за которую не должна выходить погрешность. Данная норма отражает то положение, что средства измерений можно применять с однократным считыванием показаний.

. Порознь нормируют все свойства СИ, влияющие на их точность: отдельно нормируют основную погрешность, по отдельности - все дополнительные погрешности и другие свойства, влияющие на точность измерений. При выполнении данного требования обеспечивается максимальная однородность средств измерений одного типа, то есть близкие значения дополнительных погрешностей, обусловленных одними и теми же факторами. Это дает возможность заменять один прибор другим однотипным без возможного увеличения суммарной погрешности.


2. Нормирование метрологических характеристик средств измерений


.1 Метрологические характеристики средств измерений


Повышение требований к качеству продукции и эффективности ее производства привели к радикальному изменению требований к измерениям. Как указывается в Международном стандарте ИСО 9001:2000 организация (компания, фирма, предприятие или учреждение, которые выполняют самостоятельные функции и имеют администрацию) должна, в том числе, планировать и применять процессы измерения для того, чтобы:

. демонстрировать соответствие продукции;

.обеспечивать соответствие системы менеджмента качества;

.постоянно повышать результативность системы менеджмента качества.

Для организаций, разрабатывающих, производящих или применяющих СИ, одним из аспектов обеспечения качества их продукции является наличие данных о метрологических характеристик СИ, установленных с необходимой для потребителей точностью.

MX СИ необходимы для оценки пригодности СИ к измерениям в известном диапазоне с известной точностью, а также для обеспечения:

.возможности установления точности измерений;

.достижения взаимозаменяемости СИ, сравнения СИ между собой и выбора нужных СИ по точности и другим характеристикам;

.определения погрешностей измерительных систем и установок на основе MX входящих в них СИ.

Все метрологические характеристики (МХ) средства измерений можно разделить на следующие группы:

1.Характеристики, предназначенные для нахождения результатов измерений;

2.Характеристики погрешностей;

.Характеристики чувствительности СИ к влияющим факторам;

.Динамические характеристики;

.Характеристики свойств СИ, влияющих на погрешность вследствие взаимодействия средства измерений с другими объектами, включая объект, свойством которого является измеряемая физическая величина.

К первой из упомянутых групп относят градуировочные характеристики.

Градуировочная характеристика - это зависимость между значением сигнала средства измерений и истинным значением его информативного параметра. Она может быть выражена формулой, графиком, таблицей или словесно. Градуировочная характеристика может быть простой (например, показанием измерительного прибора считать отсчет по его шкале), или сложной (переходной характеристикой, выраженной дифференциальным уравнением). Иногда градуировочную характеристику выражают с помощью поправок. Поправкой называют величину, которую следует добавить к полученному по упрощенной зависимости числу, чтобы найти значение сигнала СИ.

Прежде, чем рассмотреть вторую группу метрологических характеристик, вспомним определение погрешности. Погрешностью измерений называется разность показания СИ и истинного значения измеряемой физической величины.

По способу числового выражения различают абсолютные погрешности измерений, выражаемые в единицах измеряемой физической величины, и относительные, выражаемые отношением абсолютной погрешности к истинному значению измеряемой величины.

Погрешности бывают систематическими и случайными. Совокупность систематических и случайных погрешностей СИ в нормальных условиях называется основной погрешностью.

Ко второй группе метрологических характеристик относят следующие характеристики погрешности: математическое ожидание погрешности, среднее квадратическое ожидание и вариацию. Остановимся более подробно на последней из упомянутых характеристик.

Вариация (гистерезис) - разность между показаниями СИ в данной точке диапазона измерения при возрастании и убывании измерений величины и неизменных внешних условиях:


, (10)


где Xв и Xу - значения измерений образцовыми СИ при возрастании и убывании величины Х.

Следует иметь в виду, что, хотя вариация показаний СИ вызывается случайными факторами, сама она - не случайная величина. Зависимость между выходным и входным сигналом СИ, полученную экспериментально, называют градуировочной характеристикой, которая может быть представлена аналитически, графически или в виде таблицы.

Гистерезис выходного сигнала средства измерений заключается в том, что выходной сигнал СИ зависит не только от размера измеряемой физической величины, но и от направления и скорости изменения физической величины непосредственно перед ее измерением. Вариация равна модулю разности математических ожиданий погрешности СИ при использовании его для измерения физической величины, которая непосредственно перед измерением медленно и плавно уменьшалась и медленно и плавно увеличивалась.

К характеристикам чувствительности СИ к влияющим факторам относят функции влияния. Функция влияния - это зависимость изменения метрологических характеристик СИ от изменения влияющего фактора или совокупности влияющих факторов. Наиболее существенно от влияющих факторов (внешних воздействий) зависят систематические погрешности средства измерений. Изменения систематической погрешности, вызванные наличием влияющих факторов, называют дополнительными погрешностями. Дополнительную погрешность выражают в единицах измеряемой физической величины, в долях основной или систематической погрешности.

Динамические характеристики СвИ - это характеристики динамических свойств СвИ, отражающих зависимость выходного сигнала от изменяющегося во времени входного сигнала. К ним относят: переходную, импульсную, амплитудно-фазовую, совокупность амплитудно-частотной и фазо-частотной характеристики.

Переходная функция показывает, как изменяется выходной сигнал при изменении скачком входного.

Отклик средства измерений на единичный импульс называется импульсной характеристикой.

Ампитудно-фазовая характеристика - это построенная в полярной системе координат зависимость амплитуды и сдвига фаз между выходным и входным сигналом от частоты.

Амплитудно-частотная характеристика - это зависимость амплитуды от частоты входного сигнала.

Фазо-частотная характеристика - зависимость угла сдвига фаз между выходным и входным сигналами от частоты.

Обычно для каждого средства измерений динамические характеристики регламентируют заданием номинальных характеристик. Максимальное отклонение реальных динамических характеристик от номинальных рассматривают как динамическую погрешность.

Как правило, средство измерений можно считать линейным динамическим объектом, для которого справедлив принцип суперпозиции. Погрешность такого средства измерений можно представить в виде суммы статической и динамической составляющих.

Примерами метрологических характеристик, относящихся к пятой группе, являются: входной и выходной импеданс у электрических величин, коэффициент отражения от входа и выхода в высокочастотных линиях. Чем интенсивнее взаимодействие средства измерений с объектами и устройствами, соединенными с входом и выходом СИ, тем значительнее следствия такого взаимодействия.

Для метрологических характеристик устанавливаются нормы (предельно допустимые значения, при которых возможно выполнение достоверных измерений), поэтому метрологические характеристики называют нормируемыми.

Сведения о рабочих условиях содержатся в технических условиях (техническом описании на прибор) и указывают возможность отклонения условий проведения измерений от нормальных при сохранении метрологических характеристик в установленных пределах. Для унификации применяемых видов измерительной техники рабочие условия измерений (параметры внешней среды) нормируются соответствующими государственными стандартами. К таким параметрам относятся: температура, давление, влажность, механические нагрузки при транспортировании, пределы изменения напряжения и частоты источника питания, напряженность магнитного (электрического) поля, под воздействием которого находится средство измерений.

Помимо точностных характеристик, средства измерений характеризуются диапазоном измерений, допустимыми условиями применения, чувствительностью, быстродействием, стабильностью, помехозащищён-

ностью, надёжностью и др.

Диапазон измерений - область значений измеряемой величины, для которой нормированы допускаемые пределы погрешности СИ (для преобразователей - это диапазон преобразования).

Предел измерения - наибольшее или наименьшее значение диапазона измерения. Для мер - это номинальное значение воспроизводимой величины.

Например, у шкалы на рис. 3 начальный участок сжат, потому производить отсчеты на нем неудобно. Тогда предел измерения по шкале составляет 50 ед., а диапазон - 10…50 ед.


Рисунок 3 - Неравномерная шкала СИ


Цена деления шкалы - разность значений величин, соответствующих двум соседним отметкам шкалы. Приборы с равномерной шкалой имеют постоянную цену деления, а с неравномерной - переменную. В этом случае нормируется минимальная цена деления.

Различают равномерные (рис. 4, а, б, в, г) и неравномерные шкалы. Последние делятся на существенно неравномерные и степенные.


Рисунок 4 - Виды шкал СИ


Под существенно неравномерной шкалой понимают шкалу с сужающимися делениями, на которой отметка, соответствующая полусумме начального и конечного значения рабочей части шкалы, расположена между 65 и 100% длины этой рабочей части (рис. 4, д).

Под степенной шкалой понимают шкалу с расширяющимися или сужающимися делениями, но не попадающими под определение существенно неравномерных (рис. 4, е).

Чувствительность средств измерений представляет собой способность реагировать на изменения входного сигнала и оценивается отношением изменения выходного сигнала к вызвавшему его изменению входного си гнала.


, (11)


Чувствительность - величина обратная цене деления С шкалы прибора. Для аналоговых средств измерения чувствительность показывает, на сколько делений шкалы отклоняется стрелка прибора при измерении единицы физической величины.


, (12)


Порог чувствительности - минимальное изменение входного сигнала СИ, вызвавшее изменение выходного сигнала.

Быстродействие характеризуется интервалом времени, необходимым для производства единичного измерения.

Стабильность отражает постоянство во времени метрологических характеристик. Часто эта характеристика представляется обратной величиной - нестабильностью показателей во времени.

Помехозащищенностью называется способность прибора сохранять в процессе измерений свои характеристики при наличии внешних помех.

Надежность представляет свойство средства измерений функционировать при сохранении метрологических и других характеристик в заданных пределах и режимах работы. За показатели безотказности принимают среднюю наработкуна отказ (среднее значение наработки средства измерений между отказами) и вероятность безотказной работы за заданный промежуток времени.


.2 Нормирование метрологических характеристик


Под нормированием понимается установление границ на допустимые отклонения реальных метрологических характеристик средств измерений от их номинальных значений. Только посредством нормирования метрологических характеристик можно добиться их взаимозаменяемости и обеспечить единство измерений в государстве. Реальные значения метрологических характеристик определяют при изготовлении средств измерений и затем проверяют периодически во время эксплуатации. Если при этом хотя бы одна из метрологических характеристик выходит за установленные границы, то такое средство измерений либо подвергают регулировке, либо изымают из обращения.

Нормы на значения метрологических характеристик устанавливаются стандартами на отдельные виды средств измерения. При этом делается различие между нормальными и рабочими условиями применения средств измерения.

Нормальными считаются такие условия применения средств измерений, при которых влияющие на процесс измерения величины (температура, влажность, частота, напряжение питания, внешние магнитные поля и т.д.), а также неинформативные параметры входных и выходных сигналов находятся в нормальной для данных средств измерений области значений, т.е. в такой области, где их влиянием на метрологические характеристики можно пренебречь. Нормальные области значений влияющих величин указываются в стандартах или технических условиях на средства измерений данного вида в форме номиналов с нормированными отклонениями, например, температура должна составлять 20±2°С, напряжение питания - 220 В±10% или в форме интервалов значений (влажность 30 - 80%).

Рабочая область значений влияющих величин шире нормальной области значений. В ее пределах метрологические характеристики существенно зависят от влияющих величин, однако их изменения нормируются стандартами на средства измерений в форме функций влияния или наибольших допустимых изменений. За пределами рабочей области метрологические характеристики принимают неопределенные значения.

Для нормальных условий эксплуатации средств измерений должны нормироваться характеристики суммарной погрешности и ее систематической и случайной составляющих. Суммарная погрешность Д средств измерений в нормальных условиях эксплуатации называется основной погрешностью и нормируется заданием предела допускаемого значения Дд, т.е. того наибольшего значения, при котором средство измерений еще может быть признано годным к применению.

Перечисленные выше метрологические характеристики следует нормировать не только для нормальной, но и для всей рабочей области эксплуатации средств измерений, если их колебания, вызванные изменениями внешних влияющих величин и неинформативных параметров входного сигнала в пределах рабочей области, существенно меньше номинальных значений. В противном случае эти характеристики нормируются только для нормальной области, а в рабочей области нормируются дополнительные погрешности путем задания функций влияния ш(о) или наибольших допустимых изменений Дl(о) раздельно для каждого влияющего фактора; в случае необходимости - и для совместного изменения нескольких факторов. Функции влияния нормируются формулой, числом, таблицей или задаются в виде номинальной функции влияния и предела допускаемых отклонений от нее.

Для используемых по отдельности средств измерений, точность которых заведомо превышает требуемую точность измерений, нормируются только пределы Дд допускаемого значения суммарной погрешности и наибольшие допустимые изменения метрологических характеристик. Если же точность средств измерений соизмерима с требуемой точностью измерений, то необходимо нормировать раздельно характеристики систематической и случайной погрешности и функции влияния. Только с их помощью можно найти суммарную погрешность в рабочих условиях применения средств измерений.

Динамические характеристики нормируются путем задания номинального дифференциального уравнения или передаточной, переходной, импульсной весовой функции. Одновременно нормируются наибольшие допустимые отклонения динамических характеристик от номинальных.


2.3 Способы нормирования метрологических характеристик


Типовые характеристики, предназначенные для определения результатов измерений (без введения поправки):

-функция преобразования измерительного преобразователя, а также измерительного прибора с неименованной шкалой или со шкалой, отградуированной в единицах, отличных от единиц входной величины - f(x),

-значение однозначной или значения многозначной меры - Y,

-цена деления шкалы измерительного прибора или многозначной меры,

-вид выходного кода, число разрядов кода, цена единицы наименьшего разряда кода средств измерений, предназначенных для выдачи результатов в цифровом коде, нормируют как номинальные характеристики средств измерений данного типа.

Для конкретных экземпляров средств измерений, предназначенных для применения с одной или несколькими индивидуальными характеристиками:

Функция преобразования измерительного преобразователя, а также. измерительного прибора с неименованной шкалой или со шкалой, отградуированной в единицах, отличных от единиц входной величины, - f(x),

Значение однозначной или значения многозначной меры - Y,

Цена деления шкалы измерительного прибора или многозначной меры, а не с номинальными, распространяющимися на все экземпляры средств измерений данного типа, соответствующие номинальные характеристики можно не нормировать. В этих случаях нормируют пределы (граничные характеристики), в которых должна находиться индивидуальная характеристика при предусмотренных условиях применения средств измерений.

Характеристики систематической составляющей Dsp погрешности СИ выбирают из числа следующих:

1. Значение систематической составляющей или

. Значение систематической составляющей, математическое ожидание М[] и среднее квадратическое отклонение [] систематической составляющей погрешности, нормируют путем установления: пределов (положительного и отрицательного) Dsp допускаемой систематической составляющей погрешности средств измерений данного типа или пределов Dsp допускаемой систематической составляющей погрешности, математического ожидания М[] и среднего квадратического отклонения [] систематической составляющей погрешности средств измерений данного типа.

Примечания:

. Если пределы допускаемой систематической составляющей погрешности симметричны, их записывают в виде «± Dsp».

. При необходимости допускается нормировать наибольшее допускаемое изменение систематической составляющей погрешности за заданный интервал времени.

. При необходимости допускается нормировать изменение во времени пределов допускаемой систематической составляющей погрешности.

Характеристики случайной составляющей погрешности Характеристики случайной составляющей погрешности средств измерений выбирают из числа следующих:

1. Среднее квадратическое отклонение[] случайной составляюще погрешности или

. Среднее квадратическое отклонение случайной составляющей погрешности, нормализованная автокорреляционная функция r(t) или функция спектральной плотности S(w) случайной составляющей погрешности, нор - мируют путем установления: пределаp[] допускаемого среднего квадратического отклонения случайной составляющей погрешности средств измерений данного типа или предела p[] допускаемого среднего квадратического отклонения случайной составляющей погрешности, номинальной нор-мализованной автокорреляционной функции r (t) или номинальной функции спектральной плотности S (w) случайной составляющей погрешности и пределов допускаемых отклонений этих функций от номинальных.

Характеристику случайной составляющей H погрешности от гистерезиса - вариация Н выходного сигнала (показания) средства измерений,

Нормируют путем установления предела (без учета знака) Нр допускаемой вариации выходного сигнала (показания) средства измерений данного типа.

При нормировании характеристики погрешности средств измерений устанавливают пределы (положительный и отрицательный) Dр допукаемой погрешности и предел Нр допускаемой вариации выходного сигнала (показания) средства измерений.

Характеристику по погрешности средств измерений - значение погрешности можно нормировать для средств измерений, случайная составляющая погрешности которых в каждой точке диапазона измерений пренебрежимо мала в соответствии с критериями существенности.

Для средств измерений, не предназначенных для совместного применения с другими средствами измерений (в том числе в составе измерительных систем или измерительно-вычислительных комплексов), в тех случаях, когда их погрешность в рабочих условиях применения практически полностью может быть определена нормированными верхней Dв и нижней Dн границами интервала, в котором лежит погрешность в нормальных условиях с заданной вероятностью Р, допускается указанные границы и вероятность нормировать и при существенной случайной составляющей основной погрешности средства измерений, в соответствии с критериями существенности, установленными в обязательном приложении 1.

Функции влияния Функции влияния y (x), нормируют путем установления: номинальной функции влияния ysf(x) и пределов допускаемых отклонений от нее или граничных функций влияния: верхней y*(x) и нижней y*(x).

Граничные функции влияния нормируют для таких средств измерений, у которых велик разброс функций влияния по множеству экземпляров. В силу этого номинальную функцию влияния не нормируют. При применении таких средств измерений, в случае необходимости, определяют функции влияния, индивидуальные для каждого экземпляра средства измерений. Нормированные граничные функции влияния используют для контроля качества средств измерений.

Изменения значений MX, вызванные изменениями влияющих величин: изменения e (x) значений MX средств измерений, вызванные изменениями влияющих величин в установленных пределах, нормируют путем установления пределов (положительного и отрицательного) допускаемых изменений характеристики при изменении влияющей величины в заданных пределах.

Пределы допускаемых изменений погрешности средства измерений допускается называть пределами допускаемой дополнительной погрешности средства измерений.

Функции влияния y(x) и наибольшие допускаемые изменения Îp(x) нормируют отдельно для каждой влияющей величины. Функции влияния и наибольшие допускаемые изменения допускается нормировать для совместных изменений нескольких влияющих величин как y(x1, x2, …) или Îp(x1, x2, …), если функция y(xi) или Îp(xi) какой-либо одной влияющей величины xi существенно зависит от других влияющих величин xi.

Критерий существенности устанавливают в НТД на средства измерений конкретных типов (или видов).

Полную динамическую характеристику аналоговых средств измерений, которые можно рассматривать как линейные:

Переходная характеристика;

Импульсная переходная характеристика;

Амплитудно-фазовая характеристика;

Амплитудно-частотная характеристика - для минимально фа зовых средств измерений;

Совокупность амплитудно-частотной и фазово-частотной характеристик;

6 Передаточная функция, нормируют путем установления номинальной полной динамической характеристики и пределов (положительного и отрицательного) допускаемых отклонений от нее.

Предпочтительной для нормирования является такая полная динамическая характеристика, экспериментальное определение и (или) контроль которой могут быть осуществлены с необходимой точностью и наиболее простым методом.

Частные динамические характеристики аналоговых средств измерений, которые можно рассматривать как линейные., нормируют путем установления номинальных частных динамических характеристик и пределов (положительного и отрицательного) допускаемых отклонений от них.

Допускается нормировать только частную динамическую характеристику в тех случаях, когда эта характеристика достаточна для учета динамических свойств средства измерений при его применении. Предпочтительной является такая частная динамическая характеристика, экспериментальное определение и (или) контроль которой могут быть осуществлены с необходимой точностью и наиболее простым методом.

Частные динамические характеристики аналого-цифровых преобразователей (АЦП) и цифровых измерительных приборов ЦИП, время реакции которых не превышает интервала времени между двумя измерениями, соответствующего максимальной частоте (скорости) fmax измерений, а также цифро-аналоговых преобразователей (ЦАП), нормируют путем установления номинальных частных динамических характеристик и пределов (положительного и отрицательного) допускаемых отклонений от них.

Погрешность датирования отсчета нормируют путем установления предела допускаемого математического ожидания погрешности датирования и предела допускаемого среднего квадратического отклонения или предела допускаемого размаха случайной составляющей погрешности датирования.

Для средств измерений, у которых велик разброс динамических характеристик (полных или частных) по множеству экземпляров и, в силу этого, для которых в НТД установлена необходимость определения и дальнейшего использования индивидуальных динамических характеристик каждого экземпляра средств измерений, нормируют граничные динамические характеристики, выбираемые из числа перечисленных:

Переходная характеристика;

Импульсная переходная характеристика;

Амплитудно-фазовая характеристика;

Амплитудно-частотная характеристика;

Передаточная функция,

К частным динамическим характеристикам относят любые функционалы или параметры полных динамических характеристик. Примерами таких характеристик являются:

Время реакции;

Коэффициент демпфирования;

Постоянная времени Т;

Значение амплитудно-частотной характеристики на резонансной частоте A(w0);

Значение резонансной собственной круговой частоты w0.

Частные динамические характеристики аналого-цифровы преобразователей (АЦП) и цифровых измерительных приборов (ЦИП) время реакции которых не превышает интервала времени между двумя измерениями, соответствующего максимальной частоте (скорости) fmax измерений, а также цифро-аналоговых преобразователей (ЦАП).

Примерами частных динамических характеристик АЦП являются:

Время реакции;

Погрешность датирования отсчета;

Максимальная частота измерений fmax.


3. Поверка СИ. Методы поверки


3.1Основные понятия


Согласно СТБ 8003-93 «Система обеспечения единства измерений Республики Беларусь. Поверка средств измерений. Организации и порядок проведения» поверка средств измерений - совокупность операций, выполняемых органами государственной метрологической службы и субъектами хозяйствования с целью определения соответствия средства измерений установленным требованиям.

Средство измерений - техническое устройство, предназначенное для измерений. Индикатор - устройство или вещество, которое указывает на наличие определенной физической величины, при этом оно не обязательно указывает ее значение. Межповерочный интервал - интервал времени, указанный в документе по поверке, в течение которого средство измерений должно удовлетворять установленным требованиям. Калибровка средств измерений - совокупность операций, выполняемых с целью определения действительных значений метрологических характеристик.

Эталон единицы величины - средство измерений, предназначенное для воспроизводства и (или) хранения единицы величины с целью передачи ее размера другим СИ.

Национальный эталон единицы величины - эталон, признанный решением Государственного органа и служащий основой для установления значений всех других эталонов единицы данной величины.

Метрологическая аттестация (МА) - исследование СИ, выполняемое органами ГМС либо субъектами хозяйствования для установления метрологических свойств этих средств и выдачи документа с указанием полученных данных.

Методика выполнения измерений (МВИ) - установленная совокупность правил и процедур при измерении, выполнение которых обеспечивает получение результатов измерений с допустимой погрешностью.

Государственный метрологический надзор - деятельность органов ГМС по поверке соблюдения установленных метрологических норм и правил.

Метрологический контроль - деятельность субъектов хозяйствования по поверке соблюдения установленных метрологических норм и правил.

Аккредитация лабораторий (центров) - официальное признание того, что лаборатория (центр) субъекта хозяйствования правомочна осуществлять поверку или калибровку типов или видов СИ либо конкретные испытания (измерения).

Одной из основных задач деятельности метрологической службы Республики Беларусь является поверка средств измерений.

СТБ 8003-93 устанавливает организацию и порядок представления средств измерений на поверку, проведения и оформления поверки средств измерений.

Поверку средств измерений проводят с целью установления их соответствия метрологическим и техническим требованиям, установленным в НД, и признания средств измерений пригодными к применению. Поверка средств измерений проводится по методикам поверки, разработанным в соответствии с требованиями РД РБ 50.8103 и утвержденным в результате проведенных государственных испытаний по СТБ 8001 или метрологической аттестации по СТБ 8004, приведенным в эксплуатационной документации средств измерений, включенных в Государственный реестр Республики Беларусь, а также по другим НД, признанным Госстандартом действующими на территории Республики Беларусь.

Поверку средств измерений проводят лица, аттестованные в качестве поверителей в порядке, установленном Госстандартом. Периодичность переподготовки поверителей - 5 лет.

3.2 Методы поверки


В зависимости от целей и назначения результатов поверки различают первичную, периодическую, внеочередную, инспекционную и экспертную поверку СИ.

Первичную поверку проводят при выпуске СИ из производства или ремонта, а также при ввозе по импорту СИ, прошедших государственные приемочные испытания по СТБ 8001-93. Импортные СИ не подлежат первичной поверке в случае, когда результаты поверки, проведенной в других странах, признаны Госстандартом РБ в соответствии с международными соглашениями о взаимном признании результатов испытаний и поверки. Допускается выборочная первичная поверка СИ.

Периодическая поверка СИ проводится через межповерочные интервалы, установленные с учетом обеспечения пригодности СИ к применению в период между поверками в соответствии с МИ 2187-92. Эту поверку проводят при эксплуатации и хранении СИ согласно графику поверки.

Межповерочные интервалы устанавливаются при проведении государственных приемочных испытаний или метрологической аттестации СИ, исходя из показателей надежности. Они должны гарантировать метрологическую исправность СИ в период между поверками. Годовые календарные графики периодической поверки утверждаются руководством предприятия. Графики составляются отдельно для СИ, представленных на поверку в Государственную метрологическую службу и метрологическую службу субъектов хозяйствования. СИ, находящиеся на хранении, срок которого превышает межповерочный интервал, не подвергаются периодической поверке при условии соблюдения нормативных требований к их консервации, условий хранения, вида консервации и упаковки, такие СИ подвергаются поверке перед началом эксплуатации.

В метрологической практике имеются сигнализирующие средства (индикаторы), которые не относятся к СИ и не поверяются. Право перевода СИ в разряд индикаторов предоставлено метрологическим службам субъектов хозяйствования. Согласно НД на лицевой стороне таких средств должно быть нанесено обозначение «И».

Средства измерений, используемые в учебных целях, периодической поверке не подвергаются, и на них наносится обозначение «У», использовать такие средства для измерений запрещено.

Внеочередная поверка СИ проводится органами ГМС и МС субъектов хозяйствования при эксплуатации и хранении СИ независимо от срока периодической поверки в следующих случаях:

·при необходимости подтверждения годности СИ к применению;

·при вводе СИ в эксплуатацию после длительного хранения;

·при корректировке межповерочных интервалов;

·при контроле результатов периодической поверки;

·при повреждении поверительного клейма, пломбы или утере документа, подтверждающего, СИ прошло необходимую поверку;

·при применении СИ в качестве комплектующих, передаче на длительное хранение или отправке потребителю по истечении половины межповерочного интервала на них.

Внеочередную поверку рекомендуется проводить перед началом эксплуатации новых СИ и средств, поступивших из ремонта, со склада, после хранения и после транспортировки.

Инспекционная поверка проводится выборочно при осуществлении государственного метрологического надзора и контроля со стороны субъектов хозяйствования за состоянием и применением СИ для выявления их пригодности к применению, оценки качества поверочных работ и правильности назначения межповерочных интервалов согласно условиям эксплуатации. Результаты инспекционной поверки указываются в акте поверки состояния и применения СИ.

При неудовлетворительном состоянии СИ, поверительные клейма погашают, свидетельства аннулируют, а в паспортах или эксплуатационной документации делают запись о непригодности СИ к применению.

Экспертную поверку осуществляют при проведении метрологической экспертизы средств измерений органами государственной метрологической службы. Эту поверку проводят с целью обоснования заключения о пригодности СИ к применению по письменному требованию милиции, судебно-следственных органов и Госарбитража, а также по заявкам предприятий и организаций с указанием причины.

Если данные экспертной поверки свидетельствуют о злоупотреблениях, руководитель органа государственной метрологической службы обязан сообщить об этом в следственные органы.

Результаты экспертной поверки отражаются в заключении, которое утверждается руководителем органа государственной метрологической службы.

В основу классификации применяемых методов поверки положены следующие признаки, в соответствии с которыми средства измерения могут быть поверены:

- без использования компаратора (прибора сравнения), т.е. непосредственным сличением поверяемого средства измерений с образцовым средством измерений того же вида;

- сличением поверяемого средства измерений с образцовым средством измерений того же вида с помощью компаратора;

- прямым измерением поверяемым измерительным прибором величины, воспроизводимой образцовой мерой;

- прямым измерением образцовым измерительным прибором величины, воспроизводимой подвергаемой поверке мерой;

- косвенным измерением величины, воспроизводимой мерой или измеряемой прибором, подвергаемым поверке.

Метод непосредственного сличения двух средств измерений. Этот метод широко применяется при поверке различных средств измерений и т.д. Например, в области электрических и магнитных измерений этот метод применяют при определении метрологических характеристик измерительных приборов непосредственной оценки предназначенных для измерения тока, напряжения, частоты и т.д.; в области измерения механических величин, в частности, давления. Основой метода служит одновременное измерение одного и того же значения физических величин X аналогичным по роду измеряемой величины поверяемым и образцовым приборами. При поверке данным методом устанавливают требуемое значение X, затем сравнивают показания поверяемого прибора X с показаниями X0 образцового и определяют разность ? = X - X0. Разность равна абсолютной погрешности поверяемого прибора, которую приводят к нормированному значению Xn для получения приведенной погрешности г.

Этот метод может реализовываться двумя способами:

регистрацией смещений. При этом показание индикатора поверяемого прибора путем изменения входного сигнала устанавливают равным поверяемому значению, а погрешность определяют как разность между показанием поверяемого прибора и действительным значением, определяемым по показаниям образцового прибора.

отсчётом погрешности по показанию индикатора поверяемого прибора. При этом номинальное значение размера физической величины устанавливают по образцовому прибору, а погрешность определяют как разность между номинальным значением и показанием поверяемого прибора.

Первый способ удобен тем, что дает возможность точно определить погрешность по образцовому прибору, имеющему, как правило, более высокую разрешающую способность.

Второй способ удобен при автоматической поверке, так как позволяет поверять одновременно несколько приборов с помощью одного образцового средства измерения. Недостатки этого способа: нелинейность и недостаточная разрешающая способность поверяемых приборов. Достоинства метода непосредственных сличений: простота, отсутствие необходимости применения сложного оборудования и др.

Метод сличения поверяемого средства измерений с образцовым средством измерений того же вида с помощью компаратора (прибора сравнения) заключается в том, что в ряде случаев невозможно сравнить показания двух приборов, например, вольтметров, если один из них пригоден для измерений только в цепях постоянного тока, а другой - переменного; нельзя непосредственно сравнить размеры мер магнитных и электрических величин. Измерение этих величин выполняют введением в схему поверки некоторого промежуточного звена - компаратора, позволяющего косвенно сравнивать две однородные или разнородные физические величины. Компаратором может быть любое средство измерения, одинаково реагирующее на сигнал образцового и поверяемого средств измерений.

При сличении мер сопротивления, индуктивности, емкости в качестве компараторов используют мосты постоянного или переменного тока, а при сличении мер сопротивления и ЭДС-потенциометры.

Сличение мер с помощью компараторов осуществляют методами противопоставления и замещения. Общим для этих методов поверки средств измерений является выработка сигнала о наличии разности размеров сравниваемых величин. Если этот сигнал подбором, например, образцовой меры или принудительным изменением ее размера будет сведен к нулю, то это нулевой метод. Если же на входе компаратора при одновременном воздействии размеров сличаемых мер измерительный сигнал указывает на наличие разности сравниваемых размеров, то это дифференциальный метод.

Применение в ходе поверки метода противопоставления позволяет уменьшить воздействие на результаты поверки влияющих величин ввиду того, что они практически одинаково искажают сигналы, подаваемые на вход компаратора.

Достоинства метода замещения заключаются в последовательном во времени сравнении двух величин. То, что эти величины включаются последовательно в одну и ту же часть компаратора, повышает точность измерений по сравнению с другими разновидностями метода сравнения, где несимметрия цепей, в которые включаются сравниваемые величины, приводит к возникновению систематической погрешности. Недостаток нулевого метода замещения - необходимость иметь средство измерений, позволяющее воспроизводить любое значение известной величины без существенного понижения точности. Особенностью дифференциального метода при проведении измерений и, в частности, поверки является возможность получения достоверных результатов сличения двух средств измерений даже при применении сравнительно грубых средств для измерения разности. Вместе с тем реализация этого метода требует наличия высокоточной образцовой меры с номинальным значением, близким к номинальному значению сличаемой меры.

Метод прямого измерения. Этот метод предъявляет к мерам, используемым в качестве образцовых средств измерений, ряд специфических требований. Наиболее характерными из них являются: возможность воспроизведения мерой той физической величины, в единицах которой градуировано поверяемое средство измерений, достаточный для перекрытия всего диапазона измерений поверяемого средства измерений диапазон физических величин, воспроизводимых мерой; соответствие точности меры, а в ряде случаев ее типа и плавности изменения размера требованиям, оговариваемым в НТД на методы и средства поверки средств измерений данного вида.

Как и при поверке методом непосредственного сличения, определение основной погрешности поверяемого средства измерений проводят двумя рассмотренными выше способами.

Широкое применение метод прямых измерений находит при поверке мер электрических и магнитных величин. Особенно он эффективен при поверке мер ограниченной точности.

Метод косвенных измерений величины, воспроизводимой мерой или измеряемой прибором. При реализации этого метода о действительном размере меры и измеряемой поверяемым прибором величины судят на основании прямых измерений нескольких величин, связанных с искомой вели чиной, определенной зависимостью. Метод применяется тогда, когда действительные значения величин, воспроизводимые или поверяемые поверяемым средством измерений, невозможно определить прямым измерением или когда косвенные измерения более просты или более точны по сравнению с прямыми. На основании прямых измерений и по их данным выполняют расчет. Только расчетом, основанным на определенных зависимостях между искомой величиной и результатами прямых измерений, определяют значение величины, т.е. находят результат косвенного измерения.



4. Поверка электродинамических и электромагнитных СИ


4.1 Поверка омметров


Операции и средства поверки

При проведении поверки должны быть выполнены операции и применены средства указанные в таблице из ГОСТ 8.409-81. Для контроля нормальных условий следует применять термометры с ценой деления не более 0,2 ?С, диапазон измерения не менее 15-25 ?С; психрометр для измерения влажности в диапазоне 45-80% с погрешностью не более 5%. Погрешность образцовых мер должна быть не более 0,2 предела допускаемой основной погрешности поверяемого прибора. Все средства измерений должны иметь действующие документы об их поверке или аттестации. Допускается использовать в качестве средств образцовые меры сопротивления 3-го разряда, аттестованные по более точным образцовым средствам 3-го разряда. Допускается применять другие средства проверки, удовлетворяющие по точности требованиям настоящего стандарта.

Условия поверки и подготовка к ней

При проведении поверки должны быть соблюдены следующие условия:

Температура воздуха (20±5) ?С при поверке омметров классов точности 1-4 и (20±2) ?С - при проверке более точных омметров; относительная влажность воздуха 45-80%.Омметры, имеющие отдельные индивидуальные вспомогательные части, следует поверять в комплексе с ними. Если нормальные условия, при которых нормирована основная погрешность образцового средства измерений, отличаются от указанных, то для него должны быть созданы требуемые нормальные условия.

Требования безопасности

При проведении поверки следует руководствоваться «Правилами технической эксплуатации электроустановок потребителей» и «Правилами техники безопасности при эксплуатации электроустановок потребителей». Конструкция средств поверки должна соответствовать требованиям ГОСТ 12.2.007.0-75, ГОСТ 12.2.007.3-75 и ГОСТ 22261-76.

Проведение поверки содержит:

а) Внешний осмотр:

при проведении внешнего осмотра омметра должно быть установлено: соответствие комплектности, отчетливая видимость всех надписей, предусмотренных нормативно-технической документацией на омметр конкретного типа; отсутствие следующих неисправностей и дефектов: неудовлетворительное крепление деталей электрических соединений и конкретных зажимов; непрочное крепление стекла, трещины, царапины, загрязнения и другие изъяны, мешающие отсчитыванию показаний; коробление или загрязненность шкалы; следы обугливания или повреждения изоляции внешних токоведущих частей омметра; грубые механические повреждения наружных частей омметра, отсутствие ручек регулировки;

б) Проверка электрической прочности изоляции;

в) Определение сопротивления изоляции: сопротивление определяют по методике раздела 4 ГОСТ 23706-79;

г) Опробование;

д) Определение напряжения на зажимах;

е) Определение влияния наклона: влияние наклона на показания омметра определяют на любом диапазоне. Указатель омметра при помощи магазина сопротивления устанавливают на отметку шкалы, близкую к её геометрической середине. Отклоняют омметр от указанного на нем нормального положения последовательно в четырех направлениях, но смещение указателя не должно превышать предела основной допускаемой погрешности;

ж) Определение времени успокоения подвижной части: время успокоения следует определять по методике раздела 5 ГОСТ 23706-79. Время успокоения не должно превышать указанного в разделе 1 ГОСТ 23706-79;

з) Определение основной погрешности;

и) Определение вариации показаний;

к) Оформление результатов поверки.


4.2 Поверка амперметров, вольтметров, ваттметров, варметров


При проведении поверки выполняют операции и применяют средства поверки, указанные в таблице 1.


Таблица 1 - Операции и средства поверки

Наименование операцииСредства поверки и их нормативно-технические характеристикиВнешний осмотр-Опробование-Проверка электрической прочности и сопротивления изоляцииОмметр по ГОСТ 23706 с погрешностью не более 30%; пробойная установка типа ВУФ5-3 или УПУ-10Определение основной погрешности, вариации показаний и остаточного отклонения указателя приборов от нулевой отметки:-при поверке на постоянном токе:амперметровАмперметр класса точности 0,2 по ГОСТ 8711; потенциометрическая установка постоянного тока типа У355 с пределом допускаемой основной погрешности 0,01-0,035%;калибратор постоянного тока типа П321 с пределом измерений 10×10-6-10 А и погрешностью измерений 0,01-0,05%;установка для поверки и градуировки электроизмерительных приборов типа У300;измерительная установка типа У358вольтметровВольтметры классов точности 0,1; 0,2; 0,5 по ГОСТ 8711;калибратор напряжения постоянного тока типа В1-12 (мера напряжения) с пределом допускаемой основной погрешности 0,005-0,01%;программируемый калибратор типа П320 с пределом допускаемой основной погрешности 0,005-0,01%;цифровой вольтметр типа Щ1516 с пределом допускаемой основной погрешности 0,01-0,06%;потенциометрическая установка;установка для поверки и градуировки электроизмерительных приборов и измерительная установка по п. 4.4.6.1ваттметровВаттметры классов точности 0,1 и 0,2 по ГОСТ 8476;потенциометрическая и измерительная установки по п. 4.4.6.1при поверке приборов на переменном токеУстановка типа У1134 с приборами класса точности 0,2 по ГОСТ 8711, аттестованными в качестве образцовых;амперметры классов точности 0,1; 0,2; 0,5 по ГОСТ 8711;вольтметры по п. 4.4.6.2, ваттметры по п. 4.4.6.3;измерительный комплект типа К505 с приборами класса точности 0,5 по ГОСТ 8711, аттестованными в качестве образцовых;поверочная установка постоянного и переменного тока типа У3551 с пределом допускаемой основной погрешности 0,03-1,5% или универсальная полуавтоматическая поверочная установка УППУ-1М с пределом допускаемой основной погрешности 0,04-0,3%;установка для поверки микроамперметров и милливольтметров типа УПМА-3М с пределом допускаемой основной погрешности 0,1-0,2%;цифровой вольтметр типа Ф4830 с пределом допускаемой основной погрешности 0,01-0,1%;дифференциальный цифровой вольтметр типа В3-58 с пределом допускаемой основной погрешности 0,03-0,1%;прибор для поверки вольтметров типа В1-9 с усилителем Я1В-22, с пределом допускаемой основной погрешности 0,03-0,1%

Примечание:

. Допускается применять другие средства поверки, удовлетворяющие по точности требованиям настоящего стандарта.

. Электрическую прочность и сопротивление изоляции определяют только при выпуске приборов из производства и после ремонта.

. Соотношение пределов допускаемой абсолютной основной погрешности образцовых средств измерений и поверяемых амперметров и вольтметров для каждой проверяемой отметки шкалы должно быть не более 1:5 при поверке приборов всех классов точности. Допускается соотношение не более 1:3 при поверке амперметров и вольтметров классов точности 0,05-0,5 и не более 1:4 - классов точности 1,0-5,0, при этом вариация показаний прибора, аттестованного в качестве образцового, не должна превышать половины абсолютного значения предела его допускаемой основной погрешности.

Соотношение пределов абсолютной основной погрешности образцовых средств измерений и поверяемых ваттметров и варметров должно быть не более 1:3 для каждой проверяемой отметки шкалы при поверке приборов классов точности 0,05-0,5 и не более 1:4 - при поверке приборов классов точности 1,0-5,0, при этом вариация показаний прибора, аттестованного в качестве образцового, не должна превышать половины абсолютного значения предела его допускаемой основной погрешности. Допускается указанные соотношения принимать равными 1:2,5, но при этом необходимо вводить поправки к показаниям образцового средства измерений с тем, чтобы выполнить требования, указанные выше.

. Диапазоны частот и измерений образцовых средств измерений должны включать соответствующие диапазоны поверяемого прибора.

При проведении поверки должны быть соблюдены следующие условия:

температура окружающего воздуха:

(20±2)°С - для классов точности 0,05-0,5;

(20±5)°С - для классов точности 1,0-5,0;

относительная влажность воздуха 30-80%;

атмосферное давление 84-106 кПа.

Нормальные значения остальных влияющих величин и допускаемых отклонений - по ГОСТ 8711 и ГОСТ 8476.

Показания приборов отсчитывают в направлении, перпендикулярном к шкале.

Приборы, отградуированные с калиброванными проводами, поверяют совместно с этими проводами. Приборы, отградуированные с соединительными проводами определенного сопротивления, поверяют совместно с эквивалентным сопротивлением, равным сопротивлению этих проводов.

Трехфазные приборы поверяют при симметричном напряжении и равномерной нагрузке фаз по ГОСТ 8476.

Проведение поверки:

а) Внешний осмотр:

при внешнем осмотре прибора должно быть установлено:

отсутствие внешних повреждений и повреждений покрытия шкалы;

четкость всех надписей по ГОСТ 8711 и ГОСТ 8476;

укомплектованность прибора запасными частями, принадлежностями, необходимыми для проведения поверки.

б) Опробование:

при опробовании должно быть установлено надежное закрепление зажимов приборов, плавный ход и четкая фиксация переключателей.

в) Проверка электрической прочности и сопротивления изоляции:

Электрическую прочность и сопротивление изоляции проверяют по ГОСТ 8711 для амперметров и вольтметров и по ГОСТ 8476 - для ваттметров и варметров при помощи установки, технические характеристики которой приведены в справочном приложении 2.

Электрическое сопротивление изоляции не должно быть меньше значения, установленного в ГОСТ 8711 для амперметров и вольтметров и в ГОСТ 8476 - для ваттметров и варметров.

г) Определение основной погрешности, вариации показаний и остаточного отклонения указателя приборов от нулевой отметки

Основную погрешность и вариацию показаний однодиапазонных приборов классов точности 0,05; 0,1 и 0,2 определяют на каждой числовой отметке шкалы.

Примечание. Для приборов класса точности 0,5 и менее точных, а также для приборов с равномерной шкалой, у которых числовых отметок более 10, допускается определять основную погрешность и вариацию показаний лишь на пяти отметках шкалы, равномерно распределенных по диапазону измерений.

Основную погрешность приборов в процентах от нормирующего значения вычисляют по формуле


, (13)


где Аизм - значение измеряемой величины, определяемое по показаниям поверяемого прибора;

Ад - действительное значение измеряемой величины, определяемое по показаниям образцового средства измерений;

Ан - нормирующее значение.

Основная погрешность поверяемого прибора не должна превышать предела допускаемой основной погрешности по ГОСТ 8476 и ГОСТ 8711.

Вариацию показаний прибора на проверяемой отметке шкалы определяют как абсолютное значение разности действительных значений измеряемой величины при одном и том же показании прибора, полученном при плавном подводе указателя сначала со стороны меньших, а затем со стороны больших значений при неизменной полярности тока.

Для приборов, поверяемых при двух направлениях тока, за вариацию в каждой точке шкалы принимают наибольшее из полученных значений. Вариацию определяют по результатам измерений, полученным при определении основной погрешности.

Вариация показаний рабочих приборов не должна превышать значений, установленных в ГОСТ 8711 и ГОСТ 8476. Вариация показаний приборов, аттестованных в качестве образцовых, не должна превышать половины значений предела допускаемой основной погрешности этого прибора.

Для определения остаточного отклонения указателя от нулевой отметки следует отметить положение указателя поверяемого прибора после плавного уменьшения значения измеряемой величины от конечной отметки шкалы до нуля.

Остаточное отклонение указателя прибора от нулевой отметки шкалы не должно превышать значений, указанных в ГОСТ 8711 и ГОСТ 8476.

Приборы постоянного и переменного тока классов точности 0,05 и 0,1 и приборы классов точности 0,05; 0,1; 0,2 и 0,5, аттестованные в качестве образцовых, должны быть поверены при двух направлениях постоянного тока при уменьшении и увеличении показаний.

В случае необходимости определения поправок основную погрешность поверяемого прибора определяют для каждой проверяемой отметки шкалы как среднее арифметическое из четырех значений погрешности.

Ни одно из значений погрешности, полученных при четырех измерениях не должно превышать значения предела допускаемой основной погрешности поверяемого прибора.

Приборы, не указанные в п. 4.4.5, должны быть поверены при одном направлении постоянного тока. Погрешность таких приборов определяют при плавном подводе указателя к каждой проверяемой отметке шкалы со стороны меньших и больших значений измеряемой величины.

Ни одно из значений погрешности, полученных при двух измерениях, не должно превышать значения предела допускаемой погрешности поверяемого прибора.

В случае необходимости определения поправок основную погрешность поверяемого прибора определяют для каждой отметки шкалы как среднее арифметическое из двух значений погрешности.

Поверка на постоянном токе

Амперметры классов точности 0,1-0,5 поверяют методом прямых измерений при помощи калибратора или косвенных измерений при помощи потенциометрической установки. Амперметры классов точности 1,0-5,0 поверяют методом непосредственного сличения при помощи образцовых амперметров и установки для поверки и градуировки электроизмерительных приборов по схемам, приведенным в ТД на образцовые средства измерений.

Вольтметры классов точности 0,1-0,5 поверяют методом прямых измерений при помощи калибратора или потенциометрической установки (вместо потенциометра может быть применен цифровой вольтметр), классов точности 1,0-5,0 - методом непосредственного сличения при помощи образцовых вольтметров и установки для поверки и градуировки электроизмерительных приборов по схемам, приведенным в ТД на образцовые средства измерений.

Ваттметры классов точности 0,1-0,5 поверяют методом косвенных измерений при помощи потенциометрической установки, ваттметры классов точности 1,0-5,0 - методом непосредственного сличения с образцовыми ваттметрами по схемам, приведенным в ТД на образцовые средства измерений.


Заключение


Метрология в самом широком понимании представляет собой науку об измерениях, о методах и средствах, обеспечении их единства, о способах достижения требуемой точности. С развитием науки и технологий постоянно создаются новые, все более точные средства измерений (СИ), включая эталоны, совершенствуются методы измерений и передачи единиц физических величин рабочим СИ, а также методы выявления и оценки погрешностей СИ. По метрологическому назначению средства измерений делят на два вида - рабочие средства измерений и эталоны. Рабочие СИ применяют для определения параметров (характеристик) технических устройств, технологических процессов, окружающей среды и др.

Отличительной особенностью средств измерения является то, что они обладают метрологическими характеристиками, приобретенными в процессе изготовления, и содержат информацию о единице измеряемой физической величины. Исследование метрологических характеристик СИ необходимо для оценки пригодности СИ к измерениям в известном диапазоне с известной точностью, а также для обеспечения возможности установления точности измерений, достижения взаимозаменяемости СИ, сравнения их между собой и выбора нужных СИ по точности и другим характеристикам. В ходе эксплуатации метрологические свойства изменяются, и в некоторых случаях может наступить метрологический отказ. Для предотвращения метрологических отказов и обеспечения единообразия средств измерений проводят поверку СИ. Государственная (ведомственная) поверка СИ, устанавливающая метрологическую исправность, является формой надзора за средствами измерений.

В данной курсовой работе я изучила принципы работы электромагнитных измерительных приборов и методы их поверки на примере омметров, амперметров, вольтметров, ваттметров, варметров. Была разработана лабораторная работа по поверке магазина сопротивлений МСР-63.

Этот материал может быть использован для преподавания основ метрологии студентам физического факультета специализации «метрология».

Основным результатом курсовой работы стало также подробное рассмотрение различных видов средств измерений и способов их нормирования.


Список использованных источников


  1. Тартаковский Д.Ф. Метрология, стандартизация и технические измерения [Текст]: учеб. для вузов / Д.Ф. Тартаковский, А.С. Ястребов. - М.: Высшая школа, 2001. - 205 с.

2 Гончаров А.А. Метрология, стандартизация и сертификация [Текст]: /

А.А. Гончаров, В.Д. Копылов. - М.: Академия, 2004.-240 с.

3 Земельман М.А. Метрологические основы технических измерений [Текст]

М.А. Земельман. - издательство стандартов, 1991.-227 с.

Крылова Г.Д. Основы стандартизации, сертификации, метрологии

[Текст]: учеб. для вузов /Г.Д. Крылова. - М.: ЮНИТИ, 2001.-711 с.

Сергеев А.Г. Метрология [Текст]: учеб. для вузов /А.Г. Сергеев. - М.:

Логос, 2005.-270 с.

ГОСТ 8.009-84. Нормирование и использование метрологических

характеристик средств измерений. - Введ. 01.01.86. - Мн.: Бел ГИСС, 1986.-42 с.

ГОСТ 8.409-81. Омметры. Методы и средства поверки. - Введ. 01.01.82.

ГОСТ 8.497-83 Амперметры, вольтметры, ваттметры, варметры. Методы и средства поверки. - Введ. 01.01.85.


Курсовая работа Принципы работы и поверка электродинамических и электромагнитных средств измерений

Больше работ по теме:

КОНТАКТНЫЙ EMAIL: [email protected]

Скачать реферат © 2017 | Пользовательское соглашение

Скачать      Реферат

ПРОФЕССИОНАЛЬНАЯ ПОМОЩЬ СТУДЕНТАМ