Переходные процессы в электроэнергетических системах

 

Введение


Короткое замыкание (КЗ) - это всякое не предусмотренное нормальными условиями работы замыкания между фазами, а в системах с заземлёнными нейтралями (или четырёхпроводными) - также замыкание одной или нескольких фаз на землю (или на нулевой провод).

Короткие замыкания приводят к резкому возрастанию токов в токоведущих частях, понижению напряжения в схемах. Следствием этого являются перегрев токоведущих частей, их механическое повреждение, наведение помех в линиях связи, перерывы электроснабжения, нарушение технологических режимов и выпуск бракованной продукции. Причинами КЗ могут являться: старение изоляции, её повреждения, ошибки оперативного персонала, а также перенапряжения в схемах. Снижение числа коротких замыканий, их тяжести и продолжительности-важнейшая задача в обеспечении надежности электроснабжения потребителей.

Расчёты трехфазных КЗ на стороне выше 1000 В следует вести с помощью метода расчетных кривых. Согласно этому практическому методу все параметры источников питания замещают сверхпереходными параметрами, комплексную нагрузку не учитывают (она учтена при составлении самих кривых), а схему приводят к виду «многолучевая звезда», где в отдельную ветвь стараются собрать однотипные генераторы. Двигатели учитываются как турбогенераторы равновеликой мощности. В каждой отдельной ветви находят расчетное сопротивление, приводят его на «новый базис» и с помощью расчётных кривых оценивают значения периодической слагающей тока КЗ во времени Iпkt. Результаты приводят «на старый базис» и из относительных единиц переводят в именованные (с помощью формулы обратного пересчёта).

Для расчёта ударного тока следует составить чисто активную схему СЭС, повторить все преобразования, проведённые для индуктивной схемы, оценить значение ударного коэффициента (аналитически или с помощью графика) и рассчитать в каждой отдельной ветви схемы свой ударный ток КЗ.

Несимметричные режимы следует рассчитывать по методу симметричных составляющих, используя правило эквивалентности прямой последовательности. Расчеты начинают с построения схем прямой, обратной и нулевой последовательностей. Затем рассчитывают их суммарные сопротивления и оценивают значение добавочного сопротивления. Несимметричные КЗ следует рассчитывать практическим методом-для сверхпереходного и установившегося режимов. По значению коэффициента тяжести аварии следует оценить наиболее опасное НКЗ; если оно опаснее трёхфазного, то следует пересчитать (приближённым методом) значение ударного тока КЗ.

Для самого опасного НКЗ необходимо построить комплексную схему замещения или векторную диаграмму. Затем рассчитывают токи простого КЗ и обрывы фаз.


1.Расчет трехфазного КЗ

короткий замыкание замещение замыкание


Электрическая схема


1.1Эквивалентирование схемы


Для расчета примем базисную мощность Sб = 1000 МВА


Рис. 1 Эквивалентная схема

Расчеты ведутся в относительных единицах, приведенных к базисным расчетным параметрам:


, где

, где

, где

Е²СД = 1.10 Е²тг = 1.13 (Х.Х.) Е²с = 1.00


Преобразуем все имеющиеся в схеме параллельные ветви в эквивалентные и определяем параметры полученных ветвей.


Рис. 1а Схема замещения и ее параметры



Преобразуем последовательно соединённые элементы схемы в соответствующие им эквивалентные сопротивления и получаем новую схему (Рис. 1б) с сопротивлениями:

Рис. 1б. Преобразование схемы



Преобразуем «звезду» в «треугольник» и получаем новую схему (Рис. 1в) с сопротивлениями:


Рис. 1в. Схема замещения после преобразования



Преобразуем последовательно соединённые элементы схемы в соответствующие им эквивалентные сопротивления (Рис. 1г)


Рис. 1г Схема после преобразования



Затем преобразуем «звезду» в «треугольник», пренебрегая сопротивлением между генератором и системой (Рис. 1 д.)


Рис. 1д. Преобразование схемы «звезды» в «треугольник»



.2 Расчет тока трехфазного короткого замыкания на ступени 110 кВ


Так как номинальное напряжение больше 1кВ, то расчёт ведём в относительных единицах с последующим пересчётом в именованные.

Для нахождения сверхпереходного тока от питающих элементов системы воспользуемся законом Ома:


I²г = Е» г / х51= 1.13 /2.08 = 0.56

I²С = Е» с / х52 = 1/0.8 = 1.25

I²СД = Е» сд / х53= 1.10/46.83 = 0.023

I²к = I²г + I²С + I²сд = 1.83

В именованных единицах:

Базисный ток:



Расчет измерения передач слагающих тока КЗ во времени:

  1. Ток системы не затухает (IС = 1.25 = const).
  2. Ток от СД слишком мал (менее 5% от суммарного тока) и его можно не учитывать.
  3. Ток от генератора передающей п/ст.

Определим Храсч:



По расчетным кривым для гидрогенератора с АРВ рис 10-7 [б] [с. 245, С.А. Ульянов - Электромагнитные переходные процессы] (с одновременным пересчетом на старый базис):

Т.к гидрогенератор с АРВ, то к Храсч прибавляем 0,07. В результате получаем:

Храсч=0.505+0.07=0.58

I0 = 1.95 ? 2? 100/(1000 ? 0.8) = 0.49

I0.1 = 1.72? 2? 100/(1000 ? 0.8) = 0.43

I ¥ = 2.05 ? 2? 100/(1000?0.8) = 0.51

Полный ток в точке КЗ


Iк0 = I0 + IС = 0.49+1.25=1.73к0.2 = I0.1 + IС = 0.43+1.25=1.68 к¥ = I¥ + IС = 0.51+1.25=1.76


В именованных единицах:

Iк0 = 1.73?2.51=4.36 kA

Iк0.2 = 1.68?2.51 = 4.21 kA

Iк ¥ = 1.76?2.51 = 4.4 kA

На рис 2.1 представлена зависимость периодической составляющей тока в именованных единицах от времени в данной точке КЗ.


Рис. 2.1 Ink = f (t)


Ударный ток в точке КЗ

Для расчета ударного тока КЗ необходимо знать ударные коэффициенты. Определим их для всех трех ветвей kуг, kус, kуСД - генератора, системы и синхронных двигателей. Но в расчете КЗ на 110 кВ будем учитывать только kуг, kус, так как током от СД мы пренебрегаем, поскольку он меньше 5% от I²к.

Для расчета ударного тока КЗ определим активные сопротивления всех элементов системы в относительных единицах, приведенных к базисным. Для этого воспользуемся табличными соотношениями x/r из табл. 3.2 [1] [Э454, часть 5]


r1 = х²г / 2 (х / r) ср = 2.8/(2?100) = 0.014

r2 = хТ1 / 2 (х / r)ср = 0.6/(2?50)= 0.006

r3 = хЛ1 / 2 (х / r) ср = 0.37/(2?5)=0.037

r4 = хЛ2/ 2 (х / r) ср = 0.28/(2? 5)=0.028

r5 = хЛ3/ (х / r) ср = 0.28/5=0.056

r6 = хАТ / 3 (х / r)ср = 0.6/(3? 17)=0.01

r7 = хсис / (х / r)ср = 0.125/50 = 0.0025

r8 = хТВ/ 2 (х / r) ср = 1.58/(2?8)=0.0987

r9 = хТС/ 2 (х / r) ср = 0.25/(2?8)= 0.0156

r10 = хТН/ 2 (х / r) ср = 2.083/(2?8)=0.13

r11 = хСД / 4 (х / r)ср = 180/(4?15)=3


Получаем активную схему замещения СЭС для нахождения ударного тока КЗ. рис. 2


Рис. 2. Активная схема замещения СЭС


Затем преобразуем полученную схему аналогично эквивалентной схеме замещения, состоящей из реактивных сопротивлений.

Преобразуем последовательно соединенные элементы схемы:


Рис. 2а Преобразованная схема замещения СЭС на втором этапе



Произведем преобразование «треугольник» - «звезда»:


Рис. 2б Преобразованная схема замещения СЭС



Свернем последовательно соединенные элементы схемы:


Рис. 2в Схема замещения СЭС



Сделаем преобразование «звезда» - «треугольник»:


Рис. 2г Преобразованная схема замещения СЭС для нахождения ударного тока



По конечным значениям сопротивлений для трех ветвей определим соотношения x/r и по графику рис 4.6 [1] [Э454 часть 1] определим kу = f (x/r):


генератор:

система:

СД:


Ударный ток:



Полный ток в точке КЗ:



В именованных единицах:



2.3 Расчет тока трёхфазного КЗ на ступени 10 кВ


Схема замещения СЭС для расчёта тока КЗ на стороне НН


Рис. 3 Расчетная схема замещения на стороне НН


Преобразуем «треугольник» в «звезду»:


Рис. 3а преобразование схемы из «звезды» в «треугольник»


Преобразуем последовательно соединённые элементы схемы в соответствующие им эквивалентные сопротивления:


Рис. 3б Схема замещения СЭС после ее преобразования.



Далее «звезду» сопротивлений преобразуем в «треугольник», пренебрегая сопротивлением между генератором и системой (рис. 3в).


Рис. 3в Схема замещения для расчета тока КЗ на стороне НН


Сверхпереходные токи в относительных единицах, приведенных к базисным:



В именованных единицах:



Расчет измерения периодической слагающей тока КЗ во времени.

  1. Ток системы не затухает (IС = 0.36= const)
  2. Ток от генератора передающей станции:

По расчетным кривым для гидрогенератора с АРВ (с одновременным пересчетом на старый базис):



  1. Ток от СД


Для СД по расчетным кривым, как для ТГ без АРВ (с одновременным пересчетом на старый базис)



Полный ток в точке КЗ



В именованных единицах:


кА


кА

кА

кА

На рис. 3г представлена зависимость периодической составляющей тока в именованных единицах от момента времени в данной точке КЗ.


Рис. 3г Ink = f (t)


Ударный ток точки КЗ

Для расчета ударного тока воспользуемся ударными коэффициентами kуг, kус, kуСД - генератора, системы и синхронных двигателей, рассчитанными ранее для ступени 110 кВ. Расчет ударного тока будем проводить для каждой ветви отдельно:



Суммарный ударный ток:



В именованных единицах:



.4 Расчет трехфазного КЗ на ступени 0,4 кВ


Для данной ступени напряжения расчет короткого замыкания будем производить для четырех точек: К1, К2, К3, К4.

Параметры включении схемы определяется свертыванием схемы прямой последовательности относительного 10 кВ (Рис. 4).


Рис. 4 Схема замещения СЭС для расчета тока КЗ на ступени 0,4 кВ


Так как точка КЗ на ступени 0,4 кВ, то все расчёты ведутся в именованных единицах.

Рассчитаем в относительных единицах, приведенных к базисным, для этого воспользуемся схемой на рис. 4


В именованных единицах на ступени 0,4 кВ



Приведенные значения активного и реактивного сопротивления кабелей К1 и К2:



Приведенные сопротивления трансформатора Т3



Сопротивления катушки автомата:


А = 0.45?10-4 ОмrА = 0.6?10-4 Ом


Сопротивления трансформатора тока:

xТТ = 3.5?10-4 Ом rТТ = 2?10-4 Ом

Сопротивление контактов:

rК = 150?10-4 Ом

Расчет трехфазного КЗ на ступени 0,4 кВ для точки К4.

Результирующие параметры схемы



Ток трехфазного КЗ от системы (не затухает)


Определим ударный ток системы



Ток от АД:



Ток от обобщенной нагрузки:



Общий сверхпереходной ток в точке К4



Полный ударный ток в точке КЗ



Расчет трехфазного КЗ на ступени 0,4 кВ для точки К3.

Результирующие параметры схемы



Ток трехфазного КЗ от системы (не затухает)



Определим ударный ток системы:



При изменении точек КЗ от К4 до К1 изменяется только ток трехфазного КЗ от системы, токи КЗ и ударные токи от АД и от обобщенной нагрузки остаются постоянными.

Общий сверхпереходной ток в точке КЗ:



Полный ударный ток в точке КЗ



Расчет трехфазного КЗ на ступени 0,4 кВ для точки К2.

Результирующие параметры схемы.


Ток трехфазного КЗ от системы (не затухает)

Определим ударный ток системы



Общий сверхпереходной ток в точке КЗ



Полный ударный ток в точке КЗ



Расчет трехфазного КЗ на ступени 10,5 кВ для точки К1

Для данного расчета необходимо перевести параметры схемы замещения на новый базис напряжения 10,5 кВ. Расчеты проводятся в именованных единицах, приведенных к базисной ступени напряжения.



Результирующие параметры схемы.



Ток трехфазного КЗ от системы (не затухает)



Определим ударный ток в точке К1, это ток только от системы так как токи от обобщенной нагрузки и от АД на этой ступени учитывать не будем.



Данные расчетов на ступени 0,4 и 10.5 кВ сведем в таблицу 1.


Таблица 1. Значение сверхпереходных и ударных токов на ступени 0,4

К4К3К2К1 (10 кВ)Iкз [кА]47.39748.391198.096.834iу [кА]76.44377.851287.3669.53

Таким образом, можно сказать, что на ступени 0,4 и 10 кВ наиболее опасная точка трехфазного к.з. - точка К2, так как в ней значения общего сверхпереходного тока и полного ударного тока принимают наибольшее значение.


2. Расчет несимметричного КЗ


.1 Расчет НКЗ на стороне 110 кВ


Определение и расчет самого опасного тока КЗ

Схема прямой последовательности соответствует схеме для расчета трехфазного КЗ при Uн = 110 кВ (на стороне ВН)


Рис. 5 Схема прямой последовательности


Для дальнейшего расчёта схему (рис. 5) следует преобразовать к виду (рис. 5а)


Рис. 5а Расчетная схема прямой последовательности



Схема обратной последовательности соответствует схеме (свернутой) прямой последовательности, при этом ЭДС в схеме не учитывается, а концы ветвей с ЭДС объединяются (Рис. 5 б).


Рис. 5б Схема обратной последовательности


Составим далее схему нулевой последовательности и рассчитаем ее параметры. (Рис. 18)

В этой схеме трансформаторы Т1 будем учитывать полностью. Автотрансформатор входит аналогично Т1.

Из-за способа соединения обмоток в схему нулевой последовательности не вошли сопротивления турбогенераторов и СД, а так же обмотки низкого и среднего напряжения в трёхобмоточном трансформаторе.


Рис. 6 Схема нулевой последовательности


Расчетные сопротивления схемы нулевой последовательности в о.е., приведенных к базисным.

Сопротивления трансформаторов Т1, трехфазных трансформаторов и автотрансформаторов АТ в схеме нулевой последовательности не изменятся.

Сопротивления линии будут иметь другие значения. В зависимости от наличия грозозащитного троса и количества цепей в линии выбираем отношение х01.

линия 1 - без троса, 2 цепи х01 = 5.5

линия 2 - с тросом, 2 цепи х01 = 4.7

линия 3 - с тросом, 1 цепь х01 = 3.0

Сопротивления линии схемы нулевой последовательности в о.е., приведенных к базисным (с одновременным преобразованием параллельного соединения двуцепной линии в последовательное):



Произведем преобразование «треугольник» - «звезда. Получим:



Сделаем преобразование «звезда» - «треугольник»:



Для расчёта тока короткого замыкания необходимо рассчитать ток прямой последовательности. При несимметричном коротком замыкании между аварийной фазой и землёй возникает добавочное сопротивление xД, величина которого определяется по формуле (5.5) из методических указаний по ЭМПП, сост. Воробьев, часть [6] с. 35.



Фазный ток в каждой ветви схемы:



В именованных единицах:



Расчет коэффициентов тяжести аварий

Коэффициенты тяжести аварии показывают какой вид короткого замыкания наиболее опасен и вычисляются по формуле (для случая сверхпереходного режима):



Подставив в это выражение найденные ранее значения получим для первоначального момента возникновения НКЗ:


Для однофазного КЗ:

Для двухфазного КЗ:

Для двухфазного К.З. на землю:


где добавочные сопротивления (шунта) зависят от вида НКЗ):


для однофазного КЗ:?X(1)=X?2+X?0=0.316+0.566=0.882;

для двухфазного КЗ:?X(2)=X ?2=0.566;

для двухфазного КЗ на землю:.


где фазный коэффициент:

для однофазного КЗ:m(1)=3

для двухфазного КЗ:m(2)=


для двухфазного КЗ на землю:


Для данного примера можно сделать вывод, что самым опасным из НКЗ является однофазное КЗ. А для выбора оборудования СЭС на стороне ВН выбираем ударный ток 3-х фазного КЗ.

Расчет установившегося режима однофазного короткого замыкания

Параметры схемы замещаем синхронными параметрами:


Выполним преобразование «треугольник» - «звезда»:



Преобразуем последовательно соединенные элементы схемы:



Выполним преобразование «треугольник» - «звезда»:


Т.к при составлении схемы, ее параметры не зависят от момента времени переходного процесса, то справедливы равенства:



Следовательно, сопротивление шунта остается таким же:


?X(1)=X?2+X?0=0.316+0.566=0.882


Поэтому, для особой фазы А ток прямой последовательности:



Фазный ток:



В именованных единицах:



Ударный ток:

Приближенная оценка Ку=1.84



Векторная диаграмма токов.

Граничные условия.

UКА = 0

IКВ = 0

IКС = 0

Выражение токов фаз через симметричные составляющие фазы А имеет вид



где операторы и означают поворот вектора соответственно на 120° и 240° против часовой стрелки.

Ток прямой последовательности фазы А при однофазном к.з. на землю возьмем из расчета НКЗ на ступени 220 кВ (в о.е., приведенных к базисным)

Iка1 = Iка2= Iка0 = 0.68

Ток к.з. в аварийной фазе А (в о.е., приведенных к базисным)

Iка= 3?Iка1= 0,68?3 = 2.04

Токи в неаварийных фазах


Iкв =

Iкс =


Рис. 6.2а Векторная диаграмма токов


Векторная диаграмма напряжений

Симметричные составляющие напряжения фазы А в точке к.з. определяются по формулам


=-0.566?0.68 = - 0.38

= -0.316?0.68 = - 0.21

= (0.566 + 0.316) ?0.68 = 0.6


Фазные напряжения в точке к.з.



Рис. 6.2б Векторная диаграмма напряжений

2.2 Простое КЗ на стороне 35 кВ п/ст


К.з. является простым т.к., на этом протяжении нет заземленных нейтралей. Ток КЗ - емкостной ток.



Ток больше критического (для UН = 35 кВ, Iкр = 10 А), следовательно требуется его компенсация. Результирующее емкостное сопротивление нулевой последовательности ХСО?



Сопротивление дугогасящей катушки в нейтрали должно быть



2.3 Простое КЗ на стороне 10 кВ


КЗ является простым т.к., на этом протяжении нет заземленных нейтралей. Ток КЗ - емкостной ток



Ток меньше критического (для UН = 10 кВ, Iкр = 20 А), следовательно его компенсация не требуется.

2.4 Обрыв


Схема прямой последовательности имеет вид.


Рис. 7. Схема прямой последовательности при обрыве


Х12=1.7Е»Г = 1.13 (Х.Х.)

Х13=0.187Е»C = 1.0

Х14=0.14 Е»СД = 1.1

Х15=0.28

Х16=0.325

Х17=46.832



Схема обратной последовательности соответствует схеме прямой последовательности, в которой отсутствуют все источники ЭДС, а генератор и синхронный двигатель заменены своими сверхпереходными сопротивлениями.


Рис. 8 Схема обратной последовательности при обрыве


Х?2?1=47.229

Схема нулевой последовательности составляется с учетом способа соединения фаз образующих ее элементов.


Рис. 9 Схема нулевой последовательности


После преобразования «треугольника» в «звезду»:



Правило эквивалентности прямой последовательности для случая обрывов фаз

В практических расчетах обрывов используется правило эквивалентности прямой последовательности:


,


где - результирующее Э.Д.С.;


;


Х?2 и Х?0 - обратной и нулевой последовательностей соответственно.

Модуль токов в неповрежденных фазах получим, используя фазный коэффициент m(Ln) [1,2]:

для обрыва двух фаз:

При обрыве ток прямой последовательности:


Фазный ток:



В именованных единицах:



Для нахождения значений токов от питающий элементов схемы «развернем» схему до вида многолучевой звезды (используя закон Ома для участка цепи):


кА

кА

кА


Заключение

короткий замыкание замещение

Расчеты коротких замыканий, обрывов и других нарушений нормальной работы СЭС необходимы в задачах проектирования, эксплуатации и управления режимами электроснабжения промышленных предприятий и энергообъектов. Исследования электромагнитных переходных процессов связаны с изучением симметричных и несимметричных режимов, возникающих после аварийных возмущений в системе.

Анализ трёхфазных КЗ связан с расчетом сверхпереходного и установившегося режимов, периодической слагающей тока КЗ во времени (по методу расчётных кривых). Для выбора оборудования СЭС необходимо рассчитать самое опасное короткое замыкание (например, с помощью коэффициента тяжести аварии) и рассчитать для него ударный ток.

Расчет несимметричных режимов основывается на методе симметричных составляющих с применением правила эквивалентности прямой последовательности. Для анализа переходных процессов СЭС, возникающих из-за несимметричных аварий, необходимо построение векторных диаграмм и комплексных схем замещения.

В процессе выполнения курсовой работы мы научились определять переходные и сверхпереходные токи КЗ на различных ступенях напряжения, их периодические составляющие. Также мы получили необходимые знания для расчетов несимметричных, простых КЗ, а также различных видов обрывов. Научились строить векторные диаграммы токов и напряжений, а так же комплексную схему замещения при обрыве.


Литература


1.Сенько В.В. Электромагнитные переходные процессы в СЭС. Учебно-методическое пособие. - Тольятти, 2007, -59 с.

2.Сенько В.В. Электромагнитные переходные процессы при сохранении симметрии трехфазной цепи в системах электроснабжения. Учебно-методическое пособие. - Тольятти, 2008, -40 с.


Введение Короткое замыкание (КЗ) - это всякое не предусмотренное нормальными условиями работы замыкания между фазами, а в системах с заземлёнными нейтрал

Больше работ по теме:

КОНТАКТНЫЙ EMAIL: [email protected]

Скачать реферат © 2017 | Пользовательское соглашение

Скачать      Реферат

ПРОФЕССИОНАЛЬНАЯ ПОМОЩЬ СТУДЕНТАМ