Обзор техник сетевых атак на сетевом уровне модели OSI и методы противодействия

 














Обзор техник сетевых атак на сетевом уровне модели OSI и методы противодействия


ВВЕДЕНИЕ

сетевой атака вирус троянский

Любая информация имеет три основных свойства:

·Конфиденциальность.

·Целостность.

·Доступность.

Объясним каждое из этих свойств.

Конфиденциальная информация - это сведения, которые находятся во владении, пользовании или распоряжении отдельных физических или юридических лиц и распространяются по их желанию согласно с предусмотренными ними условиями.

Целостность информации (также целостность данных) - термин в информатике и теории телекоммуникаций, который означает, что данные полны, условие того, что данные не были изменены при выполнении любой операции над ними, будь то передача, хранение или представление.

Доступность информации - состояние информации (ресурсов автоматизированной информационной системы), при котором субъекты, имеющие права доступа, могут реализовывать их беспрепятственно. К правам доступа относятся: право на чтение, изменение, копирование, уничтожение информации, а также права на изменение, использование, уничтожение ресурсов.

Есть три основных метода защиты информации, которые расположены в порядке их приоритетности :

·Организационные методы защиты информации. Организационная защита информации является организационным началом, так называемым «ядром» в общей системе защиты конфиденциальной информации предприятия. От полноты и качества решения руководством предприятия и должностными лицами организационных задач зависит эффективность функционирования системы защиты информации в целом. Роль и место организационной защиты информации в общей системе мер, направленных на защиту конфиденциальной информации предприятия, определяются исключительной важностью принятия руководством своевременных и верных управленческих решений с учетом имеющихся в его распоряжении сил, средств, методов и способов защиты информации и на основе действующего нормативно-методического аппарата.

·Технические методы защиты информации. Эти методы подразумевают наличие в устройствах и технических средствах обработки информации специальных средств технических решений, которые обеспечивают защиту и контроль информации. А также программных методов защиты информации, то есть совокупность алгоритмов и программ, которые обеспечивают разграничение доступа и исключение несанкционированного использования информации.

·Правовые методы защиты информации. К правовым методам обеспечения информационной безопасности РФ относится разработка нормативных правовых актов, регламентирующих отношения в информационной сфере, и нормативных методических документов по вопросам обеспечения информационной безопасности РФ.

Наиболее важными направлениями этой деятельности являются:

.внесение изменений и дополнений в законодательство РФ, регулирующее отношения в области обеспечения информационной безопасности, в целях создания и совершенствования системы обеспечения информационной безопасности РФ, устранения внутренних противоречий в федеральном законодательстве, противоречий, связанных с международными соглашениями, к которым присоединилась Россия, и противоречий между федеральными законодательными актами и законодательными актами субъектов Российской Федерации, а также в целях конкретизации правовых норм, устанавливающих ответственность за правонарушения в области обеспечения информационной безопасности РФ;

2.законодательное разграничение полномочий в области обеспечения информационной безопасности РФ между федеральными органами государственной власти и органами государственной власти субъектов Российской Федерации, определение целей, задач и механизмов участия в этой деятельности общественных объединений, организаций и граждан;

.разработка и принятие нормативных правовых актов РФ, устанавливающих ответственность юридических и физических лиц за несанкционированный доступ к информации, ее противоправное копирование, искажение и противозаконное использование, преднамеренное распространение недостоверной информации, противоправное раскрытие конфиденциальной информации, использование в преступных и корыстных целях служебной информации или информации, содержащей коммерческую тайну;

.уточнение статуса иностранных информационных агентств, средств массовой информации и журналистов, а также инвесторов при привлечении иностранных инвестиций для развития информационной инфраструктуры России;

.законодательное закрепление приоритета развития национальных сетей связи и отечественного производства космических спутников связи;

.определение статуса организаций, предоставляющих услуги глобальных информационно-телекоммуникационных сетей на территории Российской Федерации, и правовое регулирование деятельности этих организаций;

.создание правовой базы для формирования в Российской Федерации региональных структур обеспечения информационной безопасности.

Основными объектами защиты информации являются:

·Информационные ресурсы, содержащие сведения, связанные с государственной тайной и конфиденциальной информацией.

·Средства и информационные системы (средства вычислительной техники, сети и системы), программные средства (операционные системы, системы управления базами данных, прикладное программное обеспечение), автоматизированные системы управления, системы связи и передачи данных, технические средства приёма, передачи и обработки информации ограниченного доступа (звукозапись, звукоусиление, звуковоспроизведение, переговорные и телевизионные устройства, средства изготовления, тиражирование документов и другие технические средства обработки графической, смысловой и буквенно-цифровой информации), т.е. системы и средства, непосредственно обрабатывающие конфиденциальную информацию и информацию, относящуюся к категории государственной тайны. Эти средства и системы часто называют техническими средствами приёма, обработки и хранения информации (ТСПИ).

Из всего вышеперечисленного следует, что защита информации обязана рассматриваться со всех сторон, а также знание про защиту информации необходимы любому специалисту, который работает с информацией, которая имеет определенный гриф секретности.

И, соответственно, во время распространения сети интернет, сетевых технологий и каких-либо переносных хранителей информации повышается интерес к защите этой информации.

Одной из самых незащищенных областей защиты информации на сегодняшний день является информация, которая передается через Intenet.

Для защиты этой информации одним их основных подходов является шифрование информации. Но, в данном случае остается вопрос защиты информации на сетевом уровне в любом случае, так нельзя предпологать, что злоумышленник не имеет доступа к сети.

Вопросы возможных атак на свойства информации на сетевом уровне и методы защиты от них будут рассмотрены в данной работе.


1.ОБЗОР МОДЕЛЕЙ АТАК СЕТЕВОГО УРОВНЯ И МОДЕЛИ OSI


1.1С какой целью специалисту необходимы знания о сетевых атаках сетевого уровня


В наше время зашита информации есть одной из саамы приоритетных задач при обработке информации.

Во время распространения интернета и передачи информации с помощью этой сети возрастают риски потери информации через сеть интернет. Также есть вероятность потери информации при передаче во внутренних сетях. Именно поэтому для специалистов есть очень важным понимание принципов и рисков при передаче информации по сети.


1.2Определение модели OSI, ее необходимость и функции


Эталонная модель OSI, иногда называемая стеком OSI представляет собой 7-уровневую сетевую иерархию (рис. 1) разработанную Международной организацией по стандартам (International Standardization Organization - ISO). Эта модель содержит в себе по сути 2 различных модели:

·горизонтальную модель на базе протоколов, обеспечивающую механизм взаимодействия программ и процессов на различных машинах

·вертикальную модель на основе услуг, обеспечиваемых соседними уровнями друг другу на одной машине

В горизонтальной модели двум программам требуется общий протокол для обмена данными. В вертикальной - соседние уровни обмениваются данными с использованием интерфейсов API.


Рисунок 1. Сетевая Иерархия OSI


Семь уровней иерархии:

1.Физический. Физический уровень получает пакеты данных от вышележащего канального уровня и преобразует их в оптические или электрические сигналы, соответствующие 0 и 1 бинарного потока. Эти сигналы посылаются через среду передачи на приемный узел. Механические и электрические/оптические свойства среды передачи определяются на физическом уровне и включаются:

·Тип кабелей и разъемов

·Разводку контактов в разъемах

·Схему кодирования сигналов для значений 0 и 1

К числу наиболее распространенных спецификаций физического уровня относятся:

·EIA-RS-232-C, CCITT V.24/V.28 - механические/электрические характеристики несбалансированного последовательного интерфейса.

·EIA-RS-422/449, CCITT V.10 - механические, электрические и оптические характеристики сбалансированного последовательного интерфейса.

·IEEE 802.3 -- Ethernet

·IEEE 802.5 -- Token ring

2.Канальный. Канальный уровень обеспечивает создание, передачу и прием кадров данных. Этот уровень обслуживает запросы сетевого уровня и использует сервис физического уровня для приема и передачи пакетов. Спецификации IEEE 802.x делят канальный уровень на два подуровня: управление логическим каналом (LLC) и управление доступом к среде (MAC). LLC обеспечивает обслуживание сетевого уровня, а подуровень MAC регулирует доступ к разделяемой физической среде.

Наиболее часто используемые на уровне 2 протоколы включают:

·HDLC для последовательных соединений

·IEEE 802.2 LLC (тип I и тип II) обеспечивают MAC для сред 802.x

·Ethernet

·Token ring

·FDDI

·X.25

·Frame relay

3.Сетевой. Сетевой уровень отвечает за деление пользователей на группы. На этом уровне происходит маршрутизация пакетов на основе преобразования MAC-адресов в сетевые адреса. Сетевой уровень обеспечивает также прозрачную передачу пакетов на транспортный уровень.

Наиболее часто используемые на уровне 3 протоколы включают:

·IP - протокол Internet

·IPX - протокол межсетевого обмена

·X.25 (частично этот протокол реализован на уровне 2)

·CLNP - сетевой протокол без организации соединений

4.Транспортный. Транспортный уровень делит потоки информации на достаточно малые фрагменты (пакеты) для передачи их на сетевой уровень.

Наиболее часто используемые на уровне 4 протоколы включают:

·TCP - протокол управления передачей

·NCP - Netware Core Protocol

·SPX - упорядоченный обмен пакетами

·TP4 - протокол передачи класса 4

5.Сеансовый. Сеансовый уровень отвечает за организацию сеансов обмена данными между оконечными машинами. Протоколы сеансового уровня обычно являются составной частью функций трех верхних уровней модели.

6.Уровень представления. Уровень представления отвечает за возможность диалога между приложениями на разных машинах. Этот уровень обеспечивает преобразование данных (кодирование, компрессия и т.п.) прикладного уровня в поток информации для транспортного уровня. Протоколы уровня представления обычно являются составной частью функций трех верхних уровней модели.

7.Прикладной. Прикладной уровень отвечает за доступ приложений в сеть. Задачами этого уровня является перенос файлов, обмен почтовыми сообщениями и управление сетью.

К числу наиболее распространенных протоколов верхних уровней относятся:

·FTP - протокол переноса файлов

·TFTP - упрощенный протокол переноса файлов

·X.400 - электронная почта

·Telnet

·SMTP - простой протокол почтового обмена

·CMIP - общий протокол управления информацией

·SNMP - простой протокол управления сетью

·NFS - сетевая файловая система

·FTAM - метод доступа для переноса файлов

Модель OSI необходима для совместимости любых операциооных систем (Windows, Linux, Mac OS) и могли обмениваться данными между собой.


2.СЕТЕВЫЕ АТАКИ, МЕТОДЫ ПРОТИВОДЕЙСТВИЯ АТАКАМ


2.1Техники атак на сетевом уровне и защита от них


Сетевые атаки столь же разнообразны, как и системы, против которых они направлены. Некоторые атаки отличаются большой сложностью. Другие может осуществить обычный оператор, даже не предполагающий, какие последствия может иметь его деятельность. Для оценки типов атак необходимо знать некоторые ограничения, изначально присущие протоколу TPC/IP. Сеть Интернет создавалась для связи между государственными учреждениями и университетами в помощь учебному процессу и научным исследованиям. Создатели этой сети не подозревали, насколько широко она распространится. В результате, в спецификациях ранних версий интернет-протокола (IP) отсутствовали требования безопасности. Именно поэтому многие реализации IP являются изначально уязвимыми. Через много лет, получив множество рекламаций (RFC - Request for Comments), мы, наконец, стали внедрять средства безопасности для IP. Однако ввиду того, что изначально средства защиты для протокола IP не разрабатывались, все его реализации стали дополняться разнообразными сетевыми процедурами, услугами и продуктами, снижающими риски, присущие этому протоколу. Далее мы кратко обсудим типы атак, которые обычно применяются против сетей IP, и перечислим способы борьбы с ними.

Снифферы пакетов

Сниффер пакетов представляет собой прикладную программу, которая использует сетевую карту, работающую в режиме promiscuous mode (в этом режиме все пакеты, полученные по физическим каналам, сетевой адаптер отправляет приложению для обработки). При этом сниффер перехватывает все сетевые пакеты, которые передаются через определенный домен. В настоящее время снифферы работают в сетях на вполне законном основании. Они используются для диагностики неисправностей и анализа трафика. Однако ввиду того, что некоторые сетевые приложения передают данные в текстовом формате (telnet, FTP, SMTP, POP3 и т.д.), с помощью сниффера можно узнать полезную, а иногда и конфиденциальную информацию (например, имена пользователей и пароли).

Перехват имен и паролей создает большую опасность, так как пользователи часто применяют один и тот же логин и пароль для множества приложений и систем. Многие пользователи вообще имеют один пароль для доступа ко всем ресурсам и приложениям. Если приложение работает в режиме клиент/сервер, а аутентификационные данные передаются по сети в читаемом текстовом формате, эту информацию с большой вероятностью можно использовать для доступа к другим корпоративным или внешним ресурсам. Хакеры слишком хорошо знают и используют наши человеческие слабости (методы атак часто базируются на методах социальной инженерии). Они прекрасно знают, что мы пользуемся одним и тем же паролем для доступа к множеству ресурсов, и поэтому им часто удается, узнав наш пароль, получить доступ к важной информации. В самом худшем случае хакер получает доступ к пользовательскому ресурсу на системном уровне и с его помощью создает нового пользователя, которого можно в любой момент использовать для доступа в сеть и к ее ресурсам.

Смягчить угрозу сниффинга пакетов можно с помощью следующих средств:

·Аутентификация - Сильные средства аутентификации являются первым способом защиты от сниффинга пакетов. Под "сильным" мы понимаем такой метод аутентификации, который трудно обойти. Примером такой аутентификации являются однократные пароли (OTP - One-Time Passwords). ОТР - это технология двухфакторной аутентификации, при которой происходит сочетание того, что у вас есть, с тем, что вы знаете. Типичным примером двухфакторной аутентификации является работа обычного банкомата, который опознает вас, во-первых, по вашей пластиковой карточке и, во-вторых, по вводимому вами ПИН-коду. Для аутентификации в системе ОТР также требуется ПИН-код и ваша личная карточка. Под "карточкой" (token) понимается аппаратное или программное средство, генерирующее (по случайному принципу) уникальный одномоментный однократный пароль. Если хакер узнает этот пароль с помощью сниффера, эта информация будет бесполезной, потому что в этот момент пароль уже будет использован и выведен из употребления. Заметим, что этот способ борьбы со сниффингом эффективен только для борьбы с перехватом паролей. Снифферы, перехватывающие другую информацию (например, сообщения электронной почты), не теряют своей эффективности.

·Коммутируемая инфраструктура - Еще одним способом борьбы со сниффингом пакетов в вашей сетевой среде является создание коммутируемой инфраструктуры. Если, к примеру, во всей организации используется коммутируемый Ethernet, хакеры могут получить доступ только к трафику, поступающему на тот порт, к которому они подключены. Коммутируемая инфраструктуры не ликвидирует угрозу сниффинга, но заметно снижает ее остроту.

·Анти-снифферы - Третий способ борьбы со сниффингом заключается в установке аппаратных или программных средств, распознающих снифферы, работающие в вашей сети. Эти средства не могут полностью ликвидировать угрозу, но, как и многие другие средства сетевой безопасности, они включаются в общую систему защиты. Так называемые "анти-снифферы" измеряют время реагирования хостов и определяют, не приходится ли хостам обрабатывать "лишний" трафик. Одно из таких средств, поставляемых компанией LOpht Heavy Industries, называется AntiSniff(. Боле подробную информацию можно получить на сайте#"justify">·Криптография - Самый эффективный способ борьбы со сниффингом пакетов не предотвращает перехвата и не распознает работу снифферов, но делает эту работу бесполезной. Если канал связи является криптографически защищенным, это значит, что хакер перехватывает не сообщение, а зашифрованный текст (то есть непонятную последовательность битов). Криптография Cisco на сетевом уровне базируется на протоколе IPSec. IPSec представляет собой стандартный метод защищенной связи между устройствами с помощью протокола IP. К прочим криптографическим протоколам сетевого управления относятся протоколы SSH (Secure Shell) и SSL (Secure Socket Layer).

IP-спуфинг

IP-спуфинг происходит, когда хакер, находящийся внутри корпорации или вне ее выдает себя за санкционированного пользователя. Это можно сделать двумя способами. Во-первых, хакер может воспользоваться IP-адресом, находящимся в пределах диапазона санкционированных IP-адресов, или авторизованным внешним адресом, которому разрешается доступ к определенным сетевым ресурсам. Атаки IP-спуфинга часто являются отправной точкой для прочих атак. Классический пример - атака DoS, которая начинается с чужого адреса, скрывающего истинную личность хакера. Обычно IP-спуфинг ограничивается вставкой ложной информации или вредоносных команд в обычный поток данных, передаваемых между клиентским и серверным приложением или по каналу связи между одноранговыми устройствами. Для двусторонней связи хакер должен изменить все таблицы маршрутизации, чтобы направить трафик на ложный IP-адрес. Некоторые хакеры, однако, даже не пытаются получить ответ от приложений. Если главная задача состоит в получении от системы важного файла, ответы приложений не имеют значения.

Если же хакеру удается поменять таблицы маршрутизации и направить трафик на ложный IP-адрес, хакер получит все пакеты и сможет отвечать на них так, будто он является санкционированным пользователем.

Угрозу спуфинга можно ослабить (но не устранить) с помощью следующих мер:

·Контроль доступа - Самый простой способ предотвращения IP-спуфинга состоит в правильной настройке управления доступом. Чтобы снизить эффективность IP-спуфигна, настройте контроль доступа на отсечение любого трафика, поступающего из внешней сети с исходным адресом, который должен располагаться внутри вашей сети. Заметим, что это помогает бороться с IP-спуфингом, когда санкционированными являются только внутренние адреса. Если санкционированными являются и некоторые адреса внешней сети, данный метод становится неэффективным.

·Фильтрация RFC 2827 - Вы можете пресечь попытки спуфинга чужих сетей пользователями вашей сети (и стать добропорядочным "сетевым гражданином"). Для этого необходимо отбраковывать любой исходящий трафик, исходный адрес которого не является одним из IP-адресов вашей организации. Этот тип фильтрации, известный под названием "RFC 2827", может выполнять и ваш провайдер (ISP). В результате отбраковывается весь трафик, который не имеет исходного адреса, ожидаемого на определенном интерфейсе. К примеру, если ISP предоставляет соединение с IP-адресом 15.1.1.0/24, он может настроить фильтр таким образом, чтобы с данного интерфейса на маршрутизатор ISP допускался только трафик, поступающий с адреса 15.1.1.0/24. Заметим, что до тех пор, пока все провайдеры не внедрят этот тип фильтрации, его эффективность будет намного ниже возможной. Кроме того, чем дальше от фильтруемых устройств, тем труднее проводить точную фильтрацию. Так, например, фильтрация RFC 2827 на уровне маршрутизатора доступа требует пропуска всего трафика с главного сетевого адреса (10.0.0.0/8), тогда как на уровне распределения (в данной архитектуре) можно ограничить трафик более точно (адрес - 10.1.5.0/24).Наиболее эффективный метод борьбы с IP-спуфингом тот же, что и в случае со сниффингом пакетов: необходимо сделать атаку абсолютно неэффективной. IP-спуфинг может функционировать только при условии, что аутентификация происходит на базе IP-адресов. Поэтому внедрение дополнительных методов аутентификации делает этот вид атак бесполезными. Лучшим видом дополнительной аутентификации является криптографическая. Если она невозможна, хорошие результаты может дать двухфакторная аутентификация с использованием одноразовых паролей.

Отказ в обслуживании (Denial of Service - DoS)

DoS, без всякого сомнения, является наиболее известной формой хакерских атак. Кроме того, против атак такого типа труднее всего создать стопроцентную защиту. Даже среди хакеров атаки DoS считаются тривиальными, а их применение вызывает презрительные усмешки, потому что для организации DoS требуется минимум знаний и умений. Тем не менее, именно простота реализации и огромный причиняемый вред привлекают к DoS пристальное внимание администраторов, отвечающих за сетевую безопасность. Если вы хотите побольше узнать об атаках DoS, вам следует рассмотреть их наиболее известные разновидности, а именно:

·TCP SYN Flood

·Ping of Death

·Tribe Flood Network (TFN) и Tribe Flood Network 2000 (TFN2K)

·Trinco

·Stacheldracht

·Trinity

Атаки DoS отличаются от атак других типов. Они не нацелены на получение доступа к вашей сети или на получение из этой сети какой-либо информации. Атака DoS делает вашу сеть недоступной для обычного использования за счет превышения допустимых пределов функционирования сети, операционной системы или приложения. В случае использования некоторых серверных приложений (таких как Web-сервер или FTP-сервер) атаки DoS могут заключаться в том, чтобы занять все соединения, доступные для этих приложений и держать их в занятом состоянии, не допуская обслуживания обычных пользователей. В ходе атак DoS могут использоваться обычные Интернет-протоколы, такие как TCP и ICMP (Internet Control Message Protocol). Большинство атак DoS опирается не на программные ошибки или бреши в системе безопасности, а на общие слабости системной архитектуры. Некоторые атаки сводят к нулю производительность сети, переполняя ее нежелательными и ненужными пакетами или сообщая ложную информацию о текущем состоянии сетевых ресурсов. Этот тип атак трудно предотвратить, так как для этого требуется координация действий с провайдером. Если трафик, предназначенный для переполнения вашей сети, не остановить у провайдера, то на входе в сеть вы это сделать уже не сможете, потому что вся полоса пропускания будет занята. Когда атака этого типа проводится одновременно через множество устройств, мы говорим о распределенной атаке DoS (DDoS - distributed DoS). Угроза атак типа DoS может снижаться тремя способами:

·Функции анти-спуфинга - правильная конфигурация функций анти-спуфинга на ваших маршрутизаторах и межсетевых экранах поможет снизить риск DoS. Эти функции, как минимум, должны включать фильтрацию RFC 2827. Если хакер не сможет замаскировать свою истинную личность, он вряд ли решится провести атаку.

·Функции анти-DoS - правильная конфигурация функций анти-DoS на маршрутизаторах и межсетевых экранах может ограничить эффективность атак. Эти функции часто ограничивают число полуоткрытых каналов в любой момент времени.

·Ограничение объема трафика (traffic rate limiting) - организация может попросить провайдера (ISP) ограничить объем трафика. Этот тип фильтрации позволяет ограничить объем некритического трафика, проходящего по вашей сети. Обычным примером является ограничение объемов трафика ICMP, который используется только для диагностических целей. Атаки (D)DoS часто используют ICMP.

Парольные атаки

Хакеры могут проводить парольные атаки с помощью целого ряда методов, таких как простой перебор (brute force attack), троянский конь, IP-спуфинг и сниффинг пакетов. Хотя логин и пароль часто можно получить при помощи IP-спуфинга и снифинга пакетов, хакеры часто пытаются подобрать пароль и логин, используя для этого многочисленные попытки доступа. Такой подход носит название простого перебора (brute force attack). Часто для такой атаки используется специальная программа, которая пытается получить доступ к ресурсу общего пользования (например, к серверу). Если в результате хакер получает доступ к ресурсам, он получает его на правах обычного пользователя, пароль которого был подобран. Если этот пользователь имеет значительные привилегии доступа, хакер может создать для себя "проход" для будущего доступа, который будет действовать даже если пользователь изменит свой пароль и логин. Еще одна проблема возникает, когда пользователи применяют один и тот же (пусть даже очень хороший) пароль для доступа ко многим системам: корпоративной, персональной и системам Интернет. Поскольку устойчивость пароля равна устойчивости самого слабого хоста, хакер, узнавший пароль через этот хост, получает доступ ко всем остальным системам, где используется тот же пароль. Прежде всего, парольных атак можно избежать, если не пользоваться паролями в текстовой форме. Одноразовые пароли и/или криптографическая аутентификация могут практически свести на нет угрозу таких атак. К сожалению, не все приложения, хосты и устройства поддерживают указанные выше методы аутентификации. При использовании обычных паролей, старайтесь придумать такой пароль, который было бы трудно подобрать. Минимальная длина пароля должна быть не менее восьми символов. Пароль должен включать символы верхнего регистра, цифры и специальные символы (#, %, $ и т.д.). Лучшие пароли трудно подобрать и трудно запомнить, что вынуждает пользователей записывать пароли на бумаге. Чтобы избежать этого, пользователи и администраторы могут поставить себе на пользу ряд последних технологических достижений. Так, например, существуют прикладные программы, шифрующие список паролей, который можно хранить в карманном компьютере. В результате пользователю нужно помнить только один сложный пароль, тогда как все остальные пароли будут надежно защищены приложением. С точки зрения администратора, существует несколько методов борьбы с подбором паролей. Один из них заключается в использовании средства L0phtCrack, которое часто применяют хакеры для подбора паролей в среде Windows NT. Это средство быстро покажет вам, легко ли подобрать пароль, выбранный пользователем.

Атаки типа Man-in-the-Middle

Для атаки типа Man-in-the-Middle хакеру нужен доступ к пакетам, передаваемым по сети. Такой доступ ко всем пакетам, передаваемым от провайдера в любую другую сеть, может, к примеру, получить сотрудник этого провайдера. Для атак этого типа часто используются снифферы пакетов, транспортные протоколы и протоколы маршрутизации. Атаки проводятся с целью кражи информации, перехвата текущей сессии и получения доступа к частным сетевым ресурсам, для анализа трафика и получения информации о сети и ее пользователях, для проведения атак типа DoS, искажения передаваемых данных и ввода несанкционированной информации в сетевые сессии. Эффективно бороться с атаками типа Man-in-the-Middle можно только с помощью криптографии. Если хакер перехватит данные зашифрованной сессии, у него на экране появится не перехваченное сообщение, а бессмысленный набор символов. Заметим, что если хакер получит информацию о криптографической сессии (например, ключ сессии), это может сделать возможной атаку Man-in-the-Middle даже в зашифрованной среде.

Атаки на уровне приложений

Атаки на уровне приложений могут проводиться несколькими способами. Самый распространенный из них состоит в использовании хорошо известных слабостей серверного программного обеспечения (sendmail, HTTP, FTP). Используя эти слабости, хакеры могут получить доступ к компьютеру от имени пользователя, работающего с приложением (обычно это бывает не простой пользователь, а привилегированный администратор с правами системного доступа). Сведения об атаках на уровне приложений широко публикуются, чтобы дать возможность администраторам исправить проблему с помощью коррекционных модулей (патчей). К сожалению, многие хакеры также имеют доступ к этим сведениям, что позволяет им учиться. Главная проблема с атаками на уровне приложений состоит в том, что они часто пользуются портами, которым разрешен проход через межсетевой экран. К примеру, хакер, эксплуатирующий известную слабость Web-сервера, часто использует в ходе атаки ТСР порт 80. Поскольку Web-сервер предоставляет пользователям Web-страницы, межсетевой экран должен предоставлять доступ к этому порту. С точки зрения межсетевого экрана, атака рассматривается как стандартный трафик для порта 80. Полностью исключить атаки на уровне приложений невозможно. Хакеры постоянно открывают и публикуют в Интернете все новые уязвимые места прикладных программ. Самое главное здесь - хорошее системное администрирование. Вот некоторые меры, которые можно предпринять, чтобы снизить уязвимость для атак этого типа:

·читайте лог-файлы операционных систем и сетевые лог-файлы и/или анализируйте их с помощью специальных аналитических приложений;

·подпишитесь на услуги по рассылке данных о слабых местах прикладных программ: Bugtrad (#"justify">·пользуйтесь самыми свежими версиями операционных систем и приложений и самыми последними коррекционными модулями (патчами);

·кроме системного администрирования, пользуйтесь системами распознавания атак (IDS). Существуют две взаимно дополняющие друг друга технологии IDS:

oсетевая система IDS (NIDS) отслеживает все пакеты, проходящие через определенный домен. Когда система NIDS видит пакет или серию пакетов, совпадающих с сигнатурой известной или вероятной атаки, она генерирует сигнал тревоги и/или прекращает сессию;

oхост-система IDS (HIDS) защищает хост с помощью программных агентов. Эта система борется только с атаками против одного хоста;

·В своей работе системы IDS пользуются сигнатурами атак, которые представляют собой профили конкретных атак или типов атак. Сигнатуры определяют условия, при которых трафик считается хакерским. Аналогами IDS в физическом мире можно считать систему предупреждения или камеру наблюдения. Самым большим недостатком IDS является ее способность выдавать генерировать сигналы тревоги. Чтобы минимизировать количество ложных сигналов тревоги и добиться корректного функционирования системы IDS в сети, необходима тщательная настройка этой системы.

Сетевая разведка

Сетевой разведкой называется сбор информации о сети с помощью общедоступных данных и приложений. При подготовке атаки против какой-либо сети хакер, как правило, пытается получить о ней как можно больше информации. Сетевая разведка проводится в форме запросов DNS, эхо-тестирования (ping sweep) и сканирования портов. Запросы DNS помогают понять, кто владеет тем или иным доменом и какие адреса этому домену присвоены. Эхо-тестирование (ping sweep) адресов, раскрытых с помощью DNS, позволяет увидеть, какие хосты реально работают в данной среде. Получив список хостов, хакер использует средства сканирования портов, чтобы составить полный список услуг, поддерживаемых этими хостами. И, наконец, хакер анализирует характеристики приложений, работающих на хостах. В результате добывается информация, которую можно использовать для взлома. Полностью избавиться от сетевой разведки невозможно. Если, к примеру, отключить эхо ICMP и эхо-ответ на периферийных маршрутизаторах, вы избавитесь от эхо-тестирования, но потеряете данные, необходимые для диагностики сетевых сбоев. Кроме того, сканировать порты можно и без предварительного эхо-тестирования. Просто этой займет больше времени, так как сканировать придется и несуществующие IP-адреса. Системы IDS на уровне сети и хостов обычно хорошо справляются с задачей уведомления администратора о ведущейся сетевой разведке, что позволяет лучше подготовиться к предстоящей атаке и оповестить провайдера (ISP), в сети которого установлена система, проявляющая чрезмерное любопытство.

Злоупотребление доверием

Собственно говоря, этот тип действий не является "атакой" или "штурмом". Он представляет собой злонамеренное использование отношений доверия, существующих в сети. Классическим примером такого злоупотребления является ситуация в периферийной части корпоративной сети. В этом сегменте часто располагаются серверы DNS, SMTP и HTTP. Поскольку все они принадлежат к одному и тому же сегменту, взлом одного из них приводит к взлому и всех остальных, так как эти серверы доверяют другим системам своей сети. Другим примером является система, установленная в внешней стороны межсетевого экрана, имеющая отношения доверия с системой, установленной с его внутренней стороны. В случае взлома внешней системы, хакер может использовать отношения доверия для проникновения в систему, защищенную межсетевым экраном. Риск злоупотребления доверием можно снизить за счет более жесткого контроля уровней доверия в пределах своей сети. Системы, расположенные с внешней стороны межсетевого экрана, никогда не должны пользоваться абсолютным доверием со стороны защищенных экраном систем. Отношения доверия должны ограничиваться определенными протоколами и, по возможности, аутентифицироваться не только по IP-адресам, но и по другим параметрам.

Переадресация портов

Переадресация портов представляет собой разновидность злоупотребления доверием, когда взломанный хост используется для передачи через межсетевой экран трафика, который в противном случае был бы обязательно отбракован. Представим себе межсетевой экран с тремя интерфейсами, к каждому из которых подключен определенный хост. Внешний хост может подключаться к хосту общего доступа (DMZ), но не к хосту, установленному с внутренней стороны межсетевого экрана. Хост общего доступа может подключаться и к внутреннему, и к внешнему хосту. Если хакер захватит хост общего доступа, он сможет установить на нем программное средство, перенаправляющее трафик с внешнего хоста прямо на внутренний хост. Хотя при этом не нарушается ни одно правило, действующее на экране, внешний хост в результате переадресации получает прямой доступ к защищенному хосту. Примером приложения, которое может предоставить такой доступ, является netcat. Основным способом борьбы с переадресацией портов является использование надежных моделей доверия (см. предыдущий раздел). Кроме того, помешать хакеру установить на хосте свои программные средства может хост-система IDS (HIDS).

Несанкционированный доступ

Несанкционированный доступ не может считаться отдельным типом атаки. Большинство сетевых атак проводятся ради получения несанкционированного доступа. Чтобы подобрать логин telnet, хакер должен сначала получить подсказку telnet на своей системе. После подключения к порту telnet на экране появляется сообщение "authorization required to use this resource" (для пользования этим ресурсов нужна авторизация). Если после этого хакер продолжит попытки доступа, они будут считаться "несанкционированными". Источник таких атак может находиться как внутри сети, так и снаружи. Способы борьбы с несанкционированным доступом достаточно просты. Главным здесь является сокращение или полная ликвидация возможностей хакера по получению доступа к системе с помощью несанкционированного протокола. В качестве примера можно рассмотреть недопущение хакерского доступа к порту telnet на сервере, который предоставляет Web-услуги внешним пользователям. Не имея доступа к этому порту, хакер не сможет его атаковать. Что же касается межсетевого экрана, то его основной задачей является предотвращение самых простых попыток несанкционированного доступа.

Вирусы и приложения типа "троянский конь"

Рабочие станции конечных пользователей очень уязвимы для вирусов и троянских коней. Вирусами называются вредоносные программы, которые внедряются в другие программы для выполнения определенной нежелательной функции на рабочей станции конечного пользователя. В качестве примера можно привести вирус, который прописывается в файле command.com (главном интерпретаторе систем Windows) и стирает другие файлы, а также заражает все другие найденные им версии command.com. "Троянский конь" - это не программная вставка, а настоящая программа, которая выглядит как полезное приложение, а на деле выполняет вредную роль. Примером типичного "троянского коня" является программа, которая выглядит, как простая игра для рабочей станции пользователя. Однако пока пользователь играет в игру, программа отправляет свою копию по электронной почте каждому абоненту, занесенному в адресную книгу этого пользователя. Все абоненты получают по почте игру, вызывая ее дальнейшее распространение.

Борьба с вирусами и "троянскими конями" ведется с помощью эффективного антивирусного программного обеспечения, работающего на пользовательском уровне и, возможно, на уровне сети. Антивирусные средства обнаруживают большинство вирусов и "троянских коней" и пресекают их распространение. Получение самой свежей информации о вирусах поможет эффективнее бороться с ними. По мере появления новых вирусов и "троянских коней" предприятие должно устанавливать новые версии антивирусных средств и приложений.


ЗАКЛЮЧЕНИЕ


В данной работе было проведено исследование модели OSI.

Были выявлены слабые и сильные стороны этой модели, а также предложены методы решения проблем при различных сетевых атаках.


СПИСОК ЛИТЕРАТУРЫ

сетевой атака вирус троянский

1.CISCO Internetworking Technology Overview - пер. Владимир Плешаков (Сервер Марк-ИТТ)

2.Олифер Н., Олифер В. - Введение в IP-сети : www.citforum.ru

3.Советов Б.Я., Яковлев С.А. - Построение сетей интегральногобслуживания. -Л.: Машиностроение. Ленингр. отд-ние, 1990.

4.Олифер В.Г. Олифер Н.А. Компьютерные сети [Книга]. - СПб. : Питер, 2010. - 4-е издание.

5.Скляр Бернард Цифровая связь. Теоретические основы и практическое применение [Книга]. - М. : Издательский дом "Вильямс", 2003. - 2-е издание.

.Таненбаум Э. Компьютерные сети [Книга]. - СПб. : Питер, 2003. - 4-е издание.


Обзор техник сетевых атак на сетевом уровне модели OSI и методы противодействия ВВЕДЕНИЕ сетевой а

Больше работ по теме:

КОНТАКТНЫЙ EMAIL: [email protected]

Скачать реферат © 2017 | Пользовательское соглашение

Скачать      Реферат

ПРОФЕССИОНАЛЬНАЯ ПОМОЩЬ СТУДЕНТАМ