Некоторые главы мат. анализа

 

Некоторые главы мат анализа ГЛАВА 1 РЯДЫ И ИНТЕГРАЛ ФУРЬЕ Основные сведения

Функция f(x), определенная на всей числовой оси называется периодической, если существует такое число , что при любом значении х выполняется равенство . Число Т называется периодом функции.

Отметим некоторые с в о й с т в а этой функции:

1)Сумма, разность, произведение и частное периодических функций периода Т есть периодическая функция периода Т.

2)Если функция f(x) период Т , то функция f(ax)имеет период .

3)Если f(x)- периодическая функция периода Т , то равны любые два интеграла от этой функции, взятые по промежуткам длины Т (при этом интеграл существует), т. е. при любых a и b справедливо равенство .

Тригонометрический ряд. Ряд Фурье

Если f(x) разлагается на отрезке в равномерно сходящийся тригонометрический ряд:

(1)

,то это разложение единственное и коэффициенты определяются по формулам:

, где n=1,2, . . .

Тригонометрический ряд (1) рассмотренного вида с коэффициентами называется тригонометрическим рядом Фурье, а коэффициентами ряда Фурье.

Достаточные признаки разложимости функции в ряд Фурье

Точка разрыва функции называют точкой разрыва первого рода, если существует конечные пределы справа и слева этой функции в данной точке.

ТЕОРЕМА 1 (Дирихле). Если периодическая с периодом функция непрерывна или имеет конечное число точек разрыва 1-ого рода на отрезке [] и этот отрезок можно разбить на конечное число частей, в каждом из которых f(x) монотонна, то ряд Фурье относительно функции сходится к f(x) в точках непрерывности и к среднеарифметическому односторонних пределов в точках разрыва рода (Функция удовлетворяющая этим условиям называется кусочно-монотонной).

ТЕОРЕМА 2. Если f(x) периодическая функция с периодом , которая на отрезке [] вместе со своей производной непрерывна или имеет конечное число точек разрыва первого рода, то ряд Фурье функции f(x) в точках разрыва к среднему арифметическому односторонних пределов (Функция удовлетворяющая этой теореме называется кусочно-гладкой).

Ряды Фурье для четных и нечетных функций

Пусть f(x) - четная функция с периодом 2L , удовлетворяющая условию f(-x) = f(x) .

Тогда для коэффициентов ее ряда Фурье находим формулы:

=

=

= 0 , где n=1,2, . . .

Таким образом, в ряде Фурье для четной функции отсутствуют члены с синусами, и ряд Фурье для четной функции с периодом 2L выглядит так:

Пусть теперь f(x) - нечетная функция с периодом 2L, удовлетворяющая условию f(-x) = - f(x).

Тогда для коэффициентов ее ряда Фурье находим формулы:

, где n=1,2, . . .

Таким образом, в ряде Фурье для нечетной функции отсутствует свободный член и члены с косинусами, и ряд Фурье для нечетной функции с периодом 2L выглядит так:

Если функция f(x) разлагается в тригонометрический ряд Фурье на промежутке то

, где ,

,

,

Если f(x) разлагается в тригонометрический ряд Фурье на [0,L], то доопределив заданную функцию f(x) соответствующим образом на [-L,0]; далее периодически продолжив на (T=2L), получим новую функцию, которую разлагаем в тригонометрический ряд Фурье.

Для разложения в ряд Фурье непериодической функции, заданной на конечном произвольном промежутке [a,b], надо : доопределить на [b,a+2L] и периодически продолжить, либо доопределить на [b-2L,a] и периодически продолжить.

Ряд Фурье по любой ортогональной системе функций

Последовательность функций непрерывных на отрезке [a,b], называется ортогональной системой функции на отрезке [a,b], если все функции последовательности попарно ортогональны на этом отрезке, т. е. если

Система называется ортогональной и нормированной (ортонормированной) на отрезке [a,b],

если выполняется условие

Пусть теперь f(x) - любая функция непрерывная на отрезке [a,b]. Рядом Фурье такой функции f(x) на отрезке [a,b] по ортогональной системе называется ряд:

коэффициенты которого определяются равенством:

n=1,2,...

Если ортогональная система функций на отрезке [a,b] ортонормированная, то в этом случаи

где n=1,2,...

Пусть теперь f(x) - любая функция, непрерывная или имеющая конечное число точек разрыва первого рода на отрезке [a,b]. Рядом Фурье такой функции f(x) на томже отрезке

по ортогональной системе называется ряд:

,

Если ряд Фурье функции f(x) по системе (1) сходится к функции f(x) в каждой ее точке непрерывности, принадлежащей отрезку [a,b]. В этом случае говорят что f(x) на отрезке [a,b] разлагается в ряд по ортогональной системе (1).

Комплексная форма ряда Фурье

Выражение называется комплексной формой ряда Фурье функции f(x), если определяется равенством

, где

Переход от ряда Фурье в комплексной форме к ряду в действительной форме и обратно осуществляется с помощью формул:

(n=1,2, . . .)

Задача о колебании струны

Пусть в состоянии равновесия натянута струна длинной l с концами x=0 и x=l. Предположим, что струна выведена из состояния равновесия и совершает свободные колебания. Будем рассматривать малые колебания струны, происходящие в вертикальной плоскости.

При сделанных выше допущениях можно показать, что функция u(x,t) , характеризующая положение струны в каждый момент времени t, удовлетворяет уравнению

(1) , где а - положительное число.

Наша з а д а ч а - найти функцию u(x,t) , график которой дает форму струны в любой момент времени t, т. е. найти решение уравнения (1) при граничных:

(2)

и начальных условиях:

(3)

Сначала будем искать решения уравнения (1), удовлетворяющие граничным условиям(2). Нетрудно увидеть, что u(x,t)0 является решением уравнения (1), удовлетворяющие граничным условиям(2). Будем искать решения, не равные тождественно 0, представимые в виде произведения u(x,t)=X(x)T(t), (4) , где , .

Подстановка выражения (4) в уравнение (1) дает:

Из которого наша задача сводится к отысканию решений уравнений:

Используя это условие X(0)=0, X(l)=0, докажем, что отрицательное число, разобрав все случаи.

a)Пусть Тогда X”=0 и его общее решение запишется так:

откуда и ,что невозможно , так как мы рассматриваем решения, не обращающиеся тождественно в нуль.

б) Пусть . Тогда решив уравнение

получим , и, подчинив, найдем, что

в) Если то

Уравнения имеют корни :

получим:

где -произвольные постоянные. Из начального условия найдем:

откуда , т. е.

(n=1,2,...)

(n=1,2,...).

Учитывая это, можно записать:

(n=1,2,...).

и, следовательно

, (n=1,2,...),

но так как A и B разные для различных значений n то имеем

, (n=1,2,...),

где и произвольные постоянные, которые попытаемся определить таким образом, чтобы ряд удовлетворял уравнению (1), граничным условиям (2) и начальным условиям (3).

Итак, подчиним функцию u(x,t) начальным условиям, т. е. подберем и так , чтобы выполнялись условия

Эти равенства являются соответственно разложениями функций и на отрезки [0, l] в ряд Фурье по синусам. ( Это значит что коэффициенты будут вычисляться как для нечетной функций). Таким образом, решение о колебании струны с заданным граничными и начальными условиями дается формулой

где

(n=1,2,...)

Интеграл Фурье

Достаточные условия представимости функции в интеграл Фурье.

Для того, чтобы f(x) была представлена интегралом Фурье во всех точках непрерывности и правильных точках разрыва, достаточно:

1)абсолютной интегрируемости на

(т.е. интеграл сходится)

2)на любом конечном отрезке [-L, L] функция была бы кусочно-гладкой

3)в точках разрыва функции, ее интеграл Фурье определяется полусуммой левого и правого пределов в этих точках, а в точках непрерывности к самой функции f(x)

Интегралом Фурье функции f(x) называется интеграл вида:

, где ,

.

Интеграл Фурье для четной и нечетной функции

Пусть f(x)-четная функция, удовлетворяющая условиям представимости интегралом Фурье.

Учитывая, что , а также свойство интегралов по симметричному относительно точки x=0 интервалу от четных функций, из равенства (2) получаем:

(3)

Таким образом, интеграл Фурье четной функции f(x) запишется так:

,

где a(u) определяется равенством (3).

Рассуждая аналогично, получим, для нечетной функции f(x) :

(4)

и, следовательно, интеграл Фурье нечетной функции имеет вид:

,

где b(u) определяется равенством (4).

Комплексная форма интеграла Фурье

, (5)

где

.

Выражение в форме (5) является комплексной формой интеграла Фурье для функции f(x).

Если в формуле (5) заменить c(u) его выражением, то получим:

, где правая часть формулы называется двойным интегралом

Фуpье в комплексной форме. Переход от интеграла Фурье в комплексной форме к интегралу

в действительной форме и обратно осуществим с помощью формул:

Формулы дискретного преобразования Фурье

Обратное преобразование Фурье.

где n=1,2,... , k=1,2,...

Дискретным преобразованием Фурье - называется N-мерный вектор

при этом, .

Разложение четной функции в ряд

Данную выше функцию сделаем четной(см. теорию), и рассмотрим ее на промежутке от 0 до смотри рис.2

Рис.2

поэтому разложение по косинусу имеет вид:

Из разложения видим что при n=2 дробь теряет смысл поэтому отдельно рассмотрим разложения первого и второго коэффициента суммы:

На основе данного разложения запишем функцию в виде ряда:

и вообще

.

Найдем первые пять гармоник для найденного ряда:

1-ая гармоника

2-ая гармоника

3-я гармоника

4-ая гармоника

5-ая гармоника

А теперь рассмотрим сумму этих гармоник F(x):

Комплексная форма ряда по косинусам

Для рассматриваемого ряда получаем коэффициенты (см. гл.1)

,

но при не существует, поэтому рассмотрим случай когда n=+2 :

(т.к. см. разложение выше)

и случай когда n=-2:

( т.к. )

И вообще комплексная форма:

или

или

Разложение нечетной функции в ряд

Аналогичным образом поступаем с данной функцией F(x), продлевая ее как нечетную, и рассматриваем на промежутке от 0 до смотри рис.3

Рис.3

поэтому разложение по синусам имеет вид:

Из данного разложения видно, что при n=2 произведение неопределенно (можно не учесть часть суммы), поэтому рассмотрим два отдельных случая.

При n=1:

,

и при n=2:

Учитывая данные коэффициенты имеем разложения в виде

и вообще

Найдем первые пять гармоник для данного разложения:

1-ая гармоника

2-ая гармоника

3-ая гармоника

4-ая гармоника

5-ая гармоника

И просуммировав выше перечисленные гармоники получим график функции F(x)

Вывод:

На основании главы 2, разложение функции в тригонометрический ряд(рис.1), разложение в ряд по косинусам(рис.2), разложение по синусам(рис.3), можно заключить, что данная функция разложима в тригонометрический ряд и это разложение единственное. И проанализировав суммы первых пяти гармоник по каждому разложению можно сказать, что наиболее быстрее к заданному графику достигается при разложении по синусам.

Комплексная форма ряда по синусам

Основываясь на теорию (см. гл.1) для ряда получаем:

, (т.к. )

тогда комплексный ряд имеет вид:

ГЛАВА 3 ПРЕДСТАВЛЕНИЕ ФУНКЦИИ ИНТЕГРАЛОМ ФУРЬЕ

Проверка условий представимости

Данную ранее функцию (см. гл. 2) доопределим на всей прямой от до как равную нулю(рис.4).

Рис.4

а) f(x)-определенна на R;

б) f(x) возрастает на , f(x) убывает на - кусочнo-монотонна.

f(x) = const на и .

< .

Интеграл Фурье

В соответствии с теорией (см. гл. 1) найдем a(u) и b(u):

;

.

И в конечном варианте интеграл Фурье будет выглядеть так:

Интеграл Фурье в комплексной форме

Теперь представим интеграл Фурье в комплексной форме. На основе выше полученных разложений имеем:

,

,

а теперь получим интеграл в комплексной форме:

.

ГЛАВА 4 ПРЕДСТАВЛЕНИЕ ФУНКЦИИ ПОЛИНОМОМ ЛЕЖАНДРА Основные сведения

Функцию можно разложить в ортонормированной системе пространства X=[-1,1] , причем полиномы получим, если проинтегрируем выражение:

Соответственно получим для n=0,1,2,3,4,5, ... :

. . . . . . . . . .

Для представления функции полиномом Лежандра необходимо разложить ее в ряд:

,

где и разлагаемая функция должна быть представлена на отрезке от -1 до 1.

Преобразование функции

Наша первоначальная функция имеет вид (см. рис. 1):

т. к. она расположена на промежутке от 0 до необходимо произвести замену, которая поместит функцию на промежуток от -1 до 1.

Замена:

и тогда F(t) примет вид

или

Вычисление коэффициентов ряда

Исходя из выше изложенной формулы для коэффициентов находим:

Далее вычисление коэффициентов осложнено, поэтому произведем вычисление на компьютере в системе MathCad и за одно проверим уже найденные:

Рассмотрим процесс стремления суммы полинома прибавляя поочередно - слагаемое:

А теперь рассмотрим график суммы пяти полиномов F(t) на промежутки от -1 до 0 (рис.5):

Рис. 5

т.к. очевидно, что на промежутке от 0 до 1 будет нуль.

Вывод:

На основе расчетов гл.2 и гл.4 можно заключить, что наиболее быстрое стремление из данных разложений к заданной функции достигается при разложении функции в ряд.

ГЛАВА 5 ДИСКРЕТНЫЕ ПРЕОБРАЗОВАНИЯ ФУРЬЕ Прямое преобразование

Для того, чтобы произвести прямое преобразование, необходимо задать данную функцию (гл. 1, рис. 1) таблично. Поэтому разбиваем отрезок от 0 до на N=8 частей, так чтобы приращение:

В нашем случае , и значения функции в k-ых точках будет:

для нашего случая (т.к. a=0).

Составим табличную функцию:

k

Некоторые главы мат анализа ГЛАВА 1 РЯДЫ И ИНТЕГРАЛ ФУРЬЕ Основные сведения Функция f(x), определенная на всей числовой оси называется периодической, если су

Больше работ по теме:

КОНТАКТНЫЙ EMAIL: [email protected]

Скачать реферат © 2019 | Пользовательское соглашение

Скачать      Реферат

ПРОФЕССИОНАЛЬНАЯ ПОМОЩЬ СТУДЕНТАМ