Исследование звуковой системы ПК с помощью диодной пластины

 

Министерство просвещения ПМР

ГОУ «Тираспольский Техникум Информатики и Права»














Дипломная работа

Тема: Исследование звуковой системы ПК с помощью диодной пластины











г. Тирасполь


Оглавление


Введение

Глава 1. Теоретическая часть. Исследование звуковой системы ПК с помощью диодной пластины

.1 Аналитический обзор по теме

1.2 Практическая часть

1.2.1 Структурная схема приемо-передающего устройства для беспроводной передачи сигнала

.2.2 Выбор элементной базы для построения устройства для исследования звуковой системы ПК

.2.3 Принцип работы устройства для исследования звуковой системы ПК

.2.4 Применение устройства

Глава 2. Охрана труда. Меры безопасности при техническом обслуживании средств вычислительной техники

.1 Производственная санитария и гигиена труда

.2 Требования к организации и оборудованию рабочего места техника

.3 Требования пожарной безопасности

Заключение

Список использованной литературы

Введение


С ростом популярности беспроводных технологий расширяется и сфера их применения. В дипломной работе рассмотрено решение, построенное на принципе передачи медиаданных по беспроводным каналам и предназначенные для объединения ПК и компонентов бытовой аудиотехники в единый мультимедийный комплекс.

Традиционным способом передача звука от звуковой карты ПК на усилитель колонок осуществляется с помощью кабелей. В дипломном проекте рассмотрена беспроводная передача звука по лазерному лучу на расстояние до нескольких метров.

Данная работа является актуальной, так как звуковая система существенно расширяет возможности ПК как технического средства информатизации. Звуковая система ПК конструктивно представляет собой звуковые карты, либо устанавливаемые в слот материнской платы, либо интегрированные на материнскую плату или карту расширения другой подсистемы ПК.

Целью данной дипломной работы является исследование схемотехнических решений устройств для исследований работы звуковой системы ПК, разработка структурной и принципиальной схемы, изготовление макета.

Для реализации поставленных целей нужно решить следующие задачи:

рассмотреть литературных данных по теме диплома, провести исследования по данной тематике (разработать схемы, спроектировать устройство, проанализировать рабочие характеристики устройства), привести инженерные расчеты данного разрабатываемого устройства.

Целью охраны труда является научный анализ условий труда, технологических процессов, аппаратуры и оборудования с точки зрения возможности возникновения появления опасных факторов, выделение вредных производственных веществ. На основе такого анализа определяются опасные участки производства, возможные аварийные ситуации и разрабатываются мероприятия по их устранению или ограничение последствий.

Изучение и решение проблем, связанных с обеспечением здоровых и безопасных условий, в которых протекает труд человека - одна из наиболее важных задач в разработке новых технологий и систем производства.

Изучение и выявление возможных причин производственных несчастных случаев, профессиональных заболеваний, аварий, взрывов, пожаров, и разработка мероприятий и требований, направленных на устранение этих причин позволяют создать безопасные и благоприятные условия для труда человека. Комфортные и безопасные условия труда - один из основных факторов, влияющих на производительность и безопасность труда, здоровье человека.

Глава 1. Теоретическая часть. Исследование звуковой системы ПК с помощью диодной пластины


.1 Аналитический обзор по теме


Звуковая система ПК в виде звуковой карты появилась в 1989 г., существенно расширив возможности ПК как технического средства информатизации.

Звуковая система ПК - комплекс программно-аппаратных средств, выполняющих следующие функции:

запись звуковых сигналов, поступающих от внешних источников, например, микрофона или магнитофона, путем преобразования входных аналоговых звуковых сигналов в цифровые и последующего сохранения на жестком диске;

воспроизведение записанных звуковых данных с помощью внешней акустической системы или головных телефонов (наушников);

воспроизведение звуковых компакт-дисков;

микширование (смешивание) при записи или воспроизведении сигналов от нескольких источников;

одновременная запись и воспроизведение звуковых сигналов (режим Full Duplex);

обработка звуковых сигналов: редактирование, объединение или разделение фрагментов сигнала, фильтрация, изменение его уровня;

обработка звукового сигнала в соответствии с алгоритмами объемного (трехмерного - 3D-Sound) звучания;

генерирование с помощью синтезатора звучания музыкальных инструментов, а также человеческой речи и других звуков;

управление работой внешних электронных музыкальных инструментов через специальный интерфейс MIDI.

Звуковая система ПК конструктивно представляет собой звуковые карты, либо устанавливаемые в слот материнской платы, либо интегрированные на материнскую плату или карту расширения другой подсистемы ПК, а также устройства записи и воспроизведения аудиоинформации (акустическую систему). Отдельные функциональные модули звуковой системы могут выполняться в виде дочерних плат, устанавливаемых в соответствующие разъемы звуковой карты.

Классическая звуковая система, как показано на рис. 1, содержит:

модуль записи и воспроизведения звука;

модуль синтезатора;

модуль интерфейсов;

модуль микшера;

акустическую систему.


Рис. 1 - Структура звуковой системы ПК


Первые четыре модуля, как правило, устанавливаются на звуковой карте. Причем существуют звуковые карты без модуля синтезатора или модуля записи/воспроизведения цифрового звука. Каждый из модулей может быть выполнен либо в виде отдельной микросхемы, либо входить в состав многофункциональной микросхемы. Таким образом, Chipset звуковой системы может содержать как несколько, так и одну микросхему.

Конструктивные исполнения звуковой системы ПК претерпевают существенные изменения; встречаются материнские платы с установленным на них Chipset для обработки звука.

Однако назначение и функции модулей современной звуковой системы (независимо от ее конструктивного исполнения) не меняются. При рассмотрении функциональных модулей звуковой карты принято пользоваться терминами «звуковая система ПК» или «звуковая карта».

МОДУЛЬ ЗАПИСИ И ВОСПРОИЗВЕДЕНИЯ

Модуль записи и воспроизведения звуковой системы осуществляет аналого-цифровое и цифроаналоговое преобразования в режиме программной передачи звуковых данных или передачи их по каналам DMA (Direct Memory Access - канал прямого доступа к памяти).

Звук, как известно, представляет собой продольные волны, свободно распространяющиеся в воздухе или иной среде, поэтому звуковой сигнал непрерывно изменяется во времени и в пространстве.

Запись звука - это сохранение информации о колебаниях звукового давления в момент записи. В настоящее время для записи и передачи информации о звуке используются аналоговые и цифровые сигналы. Другими словами, звуковой сигнал может быть представлен в аналоговой или цифровой форме.

Если при записи звука пользуются микрофоном, который преобразует непрерывный во времени звуковой сигнал в непрерывный во времени электрический сигнал, получают звуковой сигнал в аналоговой форме. Поскольку амплитуда звуковой волны определяет громкость звука, а ее частота - высоту звукового тона, постольку для сохранения достоверной информации о звуке напряжение электрического сигнала должно быть пропорционально звуковому давлению, а его частота должна соответствовать частоте колебаний звукового давления.

На вход звуковой карты ПК в большинстве случаев звуковой сигнал подается в аналоговой форме. В связи с тем, что ПК оперирует только цифровыми сигналами, аналоговый сигнал должен быть преобразован в цифровой. Вместе с тем акустическая система, установленная на выходе звуковой карты ПК, воспринимает только аналоговые электрические сигналы, поэтому после обработки сигнала с помощью ПК необходимо обратное преобразование цифрового сигнала в аналоговый.

Аналого-цифровое преобразование представляет собой преобразование аналогового сигнала в цифровой и состоит из следующих основных этапов: дискретизации, квантования и кодирования. Схема аналого-цифрового преобразования звукового сигнала представлена на рис. 2.


Рис. 2 - Схема аналого-цифрового преобразования звукового сигнала


Предварительно аналоговый звуковой сигнал поступает на аналоговый фильтр, который ограничивает полосу частот сигнала.

Дискретизация сигнала заключается в выборке отсчетов аналогового сигнала с заданной периодичностью и определяется частотой дискретизации. Причем частота дискретизации должна быть не менее удвоенной частоты наивысшей гармоники (частотной составляющей) исходного звукового сигнала. Поскольку человек способен слышать звуки в частотном диапазоне от 20 Гц до 20 кГц, максимальная частота дискретизации исходного звукового сигнала должна составлять не менее 40 кГц, т. е. отсчеты требуется проводить 40 000 раз в секунду. В связи с этим в большинстве современных звуковых систем ПК максимальная частота дискретизации звукового сигнала составляет 44,1 или 48 кГц.


Рис. 3 - Дискретизация по времени и квантование по уровню аналогового сигнала


Квантование по амплитуде представляет собой измерение мгновенных значений амплитуды дискретного по времени сигнала и преобразование его в дискретный по времени и амплитуде. На рис. 3 показан процесс квантования по уровню аналогового сигнала, причем мгновенные значения амплитуды кодируются 3-разрядными числами.

Кодирование заключается в преобразовании в цифровой код квантованного сигнала. При этом точность измерения при квантовании зависит от количества разрядов кодового слова. Если значения амплитуды записать с помощью двоичных чисел и задать длину кодового слова N разрядов, число возможных значений кодовых слов будет равно 2N. Столько же может быть и уровней квантования амплитуды отсчета. Например, если значение амплитуды отсчета представляется 16-разрядным кодовым словом, максимальное число градаций амплитуды (уровней квантования) составит 216= 65 536. Для 8-разрядного представления соответственно получим 28 = 256 градаций амплитуды.

Аналого-цифровое преобразование осуществляется специальным электронным устройством - аналого-цифровым преобразователем (АЦП), в котором дискретные отсчеты сигнала преобразуются в последовательность чисел. Полученный поток цифровых данных, т.е. сигнал, включает как полезные, так и нежелательные высокочастотные помехи, для фильтрации которых полученные цифровые данные пропускаются через цифровой фильтр.

Цифроаналоговое преобразование в общем случае происходит в два этапа, как показано на рис. 4. На первом этапе из потока цифровых данных с помощью цифроаналогового преобразователя (ЦАП) выделяют отсчеты сигнала, следующие с частотой дискретизации. На втором этапе из дискретных отсчетов путем сглаживания (интерполяции) формируется непрерывный аналоговый сигнал с помощью фильтра низкой частоты, который подавляет периодические составляющие спектра дискретного сигнала.


Рис. 4 - Схема цифроаналогового преобразования


Для записи и хранения звукового сигнала в цифровой форме требуется большой объем дискового пространства. Например, стереофонический звуковой сигнал длительностью 60 с, оцифрованный с частотой дискретизации 44,1 кГц при 16-разрядном квантовании для хранения требует на винчестере около 10 Мбайт.

Для уменьшения объема цифровых данных, необходимых для представления звукового сигнала с заданным качеством, используют компрессию (сжатие), заключающуюся в уменьшении количества отсчетов и уровней квантования или числа бит, приходящихся на один отсчет.

Подобные методы кодирования звуковых данных с использованием специальных кодирующих устройств позволяют сократить объем потока информации почти до 20 % первоначального. Выбор метода кодирования при записи аудиоинформации зависит от набора программ сжатия- кодеков (кодирование-декодирование), поставляемых вместе с программным обеспечением звуковой карты или входящих в состав операционной системы.

Выполняя функции аналого-цифрового и цифроаналогового преобразований сигнала, модуль записи и воспроизведения цифрового звука содержит АЦП, ЦАП и блок управления, которые обычно интегрированы в одну микросхему, также называемую кодеком. Основными характеристиками этого модуля являются: частота дискретизации; тип и разрядность АЦП и ЦАП; способ кодирования аудиоданных; возможность работы в режиме Full Duplex.

Частота дискретизации определяет максимальную частоту записываемого или воспроизводимого сигнала. Для записи и воспроизведения человеческой речи достаточно 6 - 8 кГц; музыки с невысоким качеством - 20 - 25 кГц; для обеспечения высококачественного звучания (аудиокомпакт-диска) частота дискретизации должна быть не менее 44 кГц. Практически все звуковые карты поддерживают запись и воспроизведение стереофонического звукового сигнала с частотой дискретизации 44,1 или 48 кГц.

Разрядность АЦП и ЦАП определяет разрядность представления цифрового сигнала (8, 16 или 18 бит). Подавляющее большинство звуковых карт оснащено 16-разрядными АЦП и ЦАП. Такие звуковые карты теоретически можно отнести к классу Hi-Fi, которые должны обеспечивать студийное качество звучания. Некоторые звуковые карты оснащаются 20- и даже 24-разрядными АЦП и ЦАП, что существенно повышает качество записи/воспроизведения звука.Duplex (полный дуплекс) - режим передачи данных по каналу, в соответствии с которым звуковая система может одновременно принимать (записывать) и передавать (воспроизводить) аудиоданные. Однако не все звуковые карты поддерживают этот режим в полном объеме, поскольку не обеспечивают высокое качество звука при интенсивном обмене данными. Такие карты можно использовать для работы с голосовыми данными в Internet, например, при проведении телеконференций, когда высокое качество звука не требуется.

МОДУЛЬ СИНТЕЗАТОРА

Электромузыкальный цифровой синтезатор звуковой системы позволяет генерировать практически любые звуки, в том числе и звучание реальных музыкальных инструментов. Принцип действия синтезатора иллюстрирует рис. 5.


Рис. 5 - Принцип действия современного синтезатора: а - фазы звукового сигнала; б - схема синтезатора


Синтезирование представляет собой процесс воссоздания структуры музыкального тона (ноты). Звуковой сигнал любого музыкального инструмента имеет несколько временных фаз. На рис. 5а показаны фазы звукового сигнала, возникающего при нажатии клавиши рояля. Для каждого музыкального инструмента вид сигнала будет своеобразным, но в нем можно выделить три фазы: атаку, поддержку и затухание. Совокупность этих фаз называется амплитудной огибающей, форма которой зависит от типа музыкального инструмента. Длительность атаки для разных музыкальных инструментов изменяется от единиц до нескольких десятков или даже до сотен миллисекунд. В фазе, называемой поддержкой, амплитуда сигнала почти не изменяется, а высота музыкального тона формируется во время поддержки. Последней фазе, затуханию, соответствует участок достаточно быстрого уменьшения амплитуды сигнала.

В современных синтезаторах звук создается следующим образом. Цифровое устройство, использующее один из методов синтеза, генерирует так называемый сигнал возбуждения с заданной высотой звука (ноту), который должен иметь спектральные характеристики, максимально близкие к характеристикам имитируемого музыкального инструмента в фазе поддержки, как показано на рис. 5 б. Далее сигнал возбуждения подается на фильтр, имитирующий амплитудно-частотную характеристику реального музыкального инструмента. На другой вход фильтра подается сигнал амплитудной огибающей того же инструмента. Далее совокупность сигналов обрабатывается с целью получения специальных звуковых эффектов, например, эха (реверберация), хорового исполнения (хо-рус). Далее производятся цифроаналоговое преобразование и фильтрация сигнала с помощью фильтра низких частот (ФНЧ). Основные характеристики модуля синтезатора:

метод синтеза звука;

объем памяти;

возможность аппаратной обработки сигнала для создания зву ковых эффектов;

полифония - максимальное число одновременно воспроизводимых элементов звуков.

Метод синтеза звука, использующийся в звуковой системе ПК, определяет не только качество звука, но и состав системы. На практике на звуковых картах устанавливаются синтезаторы, генерирующие звук с использованием следующих методов.

Метод синтеза на основе частотной модуляции (Frequency Modulation Synthesis - FM-синтез) предполагает использование для генерации голоса музыкального инструмента как минимум двух генераторов сигналов сложной формы. Генератор несущей частоты формирует сигнал основного тона, частотно-модулированный сигналом дополнительных гармоник, обертонов, определяющих тембр звучания конкретного инструмента. Генератор огибающей управляет амплитудой результирующего сигнала. FM-генератор обеспечивает приемлемое качество звука, отличается невысокой стоимостью, но не реализует звуковые эффекты. В связи с этим звуковые карты, использующие этот метод, не рекомендуются в соответствии со стандартом РС99.

Синтез звука на основе таблицы волн (Wave Table Synthesis - WT-синтез) производится путем использования предварительно оцифрованных образцов звучания реальных музыкальных инструментов и других звуков, хранящихся в специальной ROM, выполненной в виде микросхемы памяти или интегрированной в микросхему памяти WT-генератора. WT-синтезатор обеспечивает генерацию звука с высоким качеством. Этот метод синтеза реализован в современных звуковых картах.

Объем памяти на звуковых картах с WT-синтезатором может увеличиваться за счет установки дополнительных элементов памяти (ROM) для хранения банков с инструментами.

Звуковые эффекты формируются с помощью специального эффект-процессора, который может быть либо самостоятельным элементом (микросхемой), либо интегрироваться в состав WT-синтезатора. Для подавляющего большинства карт с WT-син-тезом эффекты реверберации и хоруса стали стандартными.

Синтез звука на основе физического моделирования предусматривает использование математических моделей звукообразования реальных музыкальных инструментов для генерации в цифровом виде и для дальнейшего преобразования в звуковой сигнал с помощью ЦАП. Звуковые карты, использующие метод физического моделирования, пока не получили широкого распространения, поскольку для их работы требуется мощный ПК.

МОДУЛЬ ИНТЕРФЕЙСОВ

Модуль интерфейсов обеспечивает обмен данными между звуковой системой и другими внешними и внутренними устройствами.

Интерфейс ISA в 1998 г. был вытеснен в звуковых картах интерфейсом PCI.

Интерфейс PCI обеспечивает широкую полосу пропускания (например, версия 2.1 - более 260 Мбит/с), что позволяет передавать потоки звуковых данных параллельно. Использование шины PCI позволяет повысить качество звука, обеспечив отношение сигнал/шум свыше 90 дБ. Кроме того, шина PCI обеспечивает возможность кооперативной обработки звуковых данных, когда задачи обработки и передачи данных распределяются между звуковой системой и CPU.(Musical Instrument Digital Interface - цифровой интерфейс музыкальных инструментов) регламентируется специальным стандартом, содержащим спецификации на аппаратный интерфейс: типы каналов, кабели, порты, при помощи которых MIDI-устройства подключаются один к другому, а также описание порядка обмена данными - протокола обмена информацией между MIDI-устройствами. В частности, с помощью MIDI-команд можно управлять светотехнической аппаратурой, видеооборудованием в процессе выступления музыкальной группы на сцене. Устройства с MIDI-интерфейсом соединяются последовательно, образуя своеобразную MIDI-сеть, которая включает контроллер - управляющее устройство, в качестве которого может быть использован как ПК, так и музыкальный клавишный синтезатор, а также ведомые устройства (приемники), передающие информацию в контроллер по его запросу. Суммарная длина MIDI-цепочки не ограничена, но максимальная длина кабеля между двумя MIDI-устройствами не должна превышать 15 метров.

Подключение ПК в MIDI-сеть осуществляется с помощью специального MIDI-адаптера, который имеет три MIDI-порта: ввода, вывода и сквозной передачи данных, а также два разъема для подключения джойстиков.

В состав звуковой карты входит интерфейс для подключения приводов CD-ROM.

МОДУЛЬ МИКШЕРА

Модуль микшера звуковой карты выполняет:

коммутацию (подключение/отключение) источников и приемников звуковых сигналов, а также регулирование их уровня;

микширование (смешивание) нескольких звуковых сигналов и регулирование уровня результирующего сигнала.

К числу основных характеристик модуля микшера относятся:

число микшируемых сигналов на канале воспроизведения;

регулирование уровня сигнала в каждом микшируемом канале;

регулирование уровня суммарного сигнала;

выходная мощность усилителя;

наличие разъемов для подключения внешних и внутренних
приемников/источников звуковых сигналов.
Источники и приемники звукового сигнала соединяются с модулем микшера через внешние или внутренние разъемы. Внешние разъемы звуковой системы обычно находятся на задней панели корпуса системного блока: Joystick/MIDI - для подключения джойстика или MIDI-адаптера; Mic In - для подключения микрофона; Line In - линейный вход для подключения любых источников звуковых сигналов; Line Out - линейный выход для подключения любых приемников звуковых сигналов; Speaker - для подключения головных телефонов (наушников) или пассивной акустической системы.

Программное управление микшером осуществляется либо средствами Windows, либо с помощью программы-микшера, поставляемой в комплекте с программным обеспечением звуковой карты.

Совместимость звуковой системы с одним из стандартов звуковых карт означает, что звуковая система будет обеспечивать качественное воспроизведение звуковых сигналов. Проблемы совместимости особенно важны для DOS-приложений. Каждое из них содержит перечень звуковых карт, на работу с которыми DOS-приложение ориентировано.

Стандарт Sound Blaster поддерживают приложения в виде игр для DOS, в которых звуковое сопровождение запрограммировано с ориентацией на звуковые карты семейства Sound Blaster.

Стандарт Windows Sound System (WSS) фирмы Microsoft включает звуковую карту и пакет программ, ориентированный в основном на бизнес-приложения.

АКУСТИЧЕСКАЯ СИСТЕМА

Акустическая система (АС) непосредственно преобразует звуковой электрический сигнал в акустические колебания и является последним звеном звуковоспроизводящего тракта.

В состав АС, как правило, входят несколько звуковых колонок, каждая из которых может иметь один или несколько динамиков. Количество колонок в АС зависит от числа компонентов, составляющих звуковой сигнал и образующих отдельные звуковые каналы.

Например, стереофонический сигнал содержит два компонента - сигналы левого и правого стереоканалов, что требует не менее двух колонок в составе стереофонической акустической системы. Звуковой сигнал в формате Dolby Digital содержит информацию для шести звуковых каналов: два фронтальных стереоканала, центральный канал (канал диалогов), два тыловых канала и канал сверхнизких частот. Следовательно, для воспроизведения сигнала Dolby Digital акустическая система должна иметь шесть звуковых колонок.

Как правило, принцип действия и внутреннее устройство звуковых колонок бытового назначения и используемых в технических средствах информатизации в составе акустической системы PC практически не различаются.

В основном АС для ПК состоит из двух звуковых колонок, которые обеспечивают воспроизведение стереофонического сигнала. Обычно каждая колонка в АС для ПК имеет один динамик, однако в дорогих моделях используются два: для высоких и низких частот. При этом современные модели акустических систем позволяют воспроизводить звук практически во всем слышимом частотном диапазоне благодаря применению специальной конструкции корпуса колонок или громкоговорителей.

Для воспроизведения низких и сверхнизких частот с высоким качеством в АС помимо двух колонок используется третий звуковой агрегат - сабвуфер (Subwoofer), устанавливаемый под рабочим столом. Такая трехкомпонентная АС для ПК состоит из двух так называемых сателлитных колонок, воспроизводящих средние и высокие частоты (примерно от 150 Гц до 20 кГц), и сабвуфера, воспроизводящего частоты ниже 150 Гц.

Отличительная особенность АС для ПК - возможность наличия собственного встроенного усилителя мощности. АС со встроенным усилителем называется активной. Пассивная АС усилителя не имеет.

Главное преимущество активной АС состоит в возможности подключения к линейному выходу звуковой карты. Питание активной АС осуществляется либо от батареек (аккумуляторов), либо от электрической сети через специальный адаптер, выполненный в виде отдельного внешнего блока или модуля питания, устанавливаемого в корпус одной из колонок.

Выходная мощность акустических систем для ПК может изменяться в широком диапазоне и зависит от технических характеристик усилителя и динамиков. Если система предназначена для озвучивания компьютерных игр, достаточно мощности 15 - 20 Вт на колонку для помещения средних размеров. При необходимости обеспечения хорошей слышимости во время лекции или презентации в большой аудитории возможно использовать одну АС, имеющую мощность до 30 Вт на канал. С увеличением мощности АС увеличиваются ее габаритные размеры и повышается стоимость.

Современные модели акустических систем имеют гнездо для головных телефонов, при подключении которых воспроизведение звука через колонки автоматически прекращается.

Основные характеристики АС:

полоса воспроизводимых частот,

чувствительность,

коэффициент гармоник,

мощность.

Полоса воспроизводимых частот (FrequencyResponse) - это амплитудно-частотная зависимость звукового давления, или зависимость звукового давления (силы звука) от частоты переменного напряжения, подводимого к катушке динамика. Полоса частот, воспринимаемых ухом человека, находится в диапазоне от 20 до 20 000 Гц. Колонки, как правило, имеют диапазон, ограниченный в области низких частот 40 - 60 Гц. Решить проблему воспроизведения низких частот позволяет использование сабвуфера.

Чувствительность звуковой колонки (Sensitivity) характеризуется звуковым давлением, которое она создает на расстоянии 1 м при подаче на ее вход электрического сигнала мощностью 1 Вт. В соответствии с требованиями стандартов чувствительность определяется как среднее звуковое давление в определенной полосе частот.

Чем выше значение этой характеристики, тем лучше АС передает динамический диапазон музыкальной программы. Разница между самыми «тихими» и самыми «громкими» звуками современных фонограмм 90 - 95 дБ и более. АС с высокой чувствительностью достаточно хорошо воспроизводят как тихие, так и громкие звуки.

Коэффициент гармоник (Total Harmonic Distortion - THD) оценивает нелинейные искажения, связанные с появлением в выходном сигнале новых спектральных составляющих. Коэффициент гармоник нормируется в нескольких диапазонах частот. Например, для высококачественных АС класса Hi-Fi этот коэффициент не должен превышать: 1,5% в диапазоне частот 250 - 1000 Гц; 1,5 % в диапазоне частот 1000 - 2000 Гц и 1,0 % в диапазоне частот 2000 - 6300 Гц. Чем меньше значение коэффициента гармоник, тем качественнее АС.

Электрическая мощность (Power Handling), которую выдерживает АС, является одной из основных характеристик. Однако нет прямой взаимосвязи между мощностью и качеством воспроизведения звука. Максимальное звуковое давление зависит, скорее, от чувствительности, а мощность АС в основном определяет ее надежность.

Часто на упаковке АС для ПК указывают значение пиковой мощности акустической системы, которая не всегда отражает реальную мощность системы, поскольку может превышать номинальную в 10 раз. Вследствие существенного различия физических процессов, происходящих при испытаниях АС, значения электрических мощностей могут отличаться в несколько раз. Для сравнения мощности различных АС необходимо знать, какую именно мощность указывает производитель продукции и какими методами испытаний она определена.

Среди производителей высококачественных и дорогих АС - фирмы Creative, Yamaha, Sony, Aiwa. AC более низкого класса выпускают фирмы Genius, Altec, JAZZ Hipster.

Некоторые модели колонок фирмы Microsoft подключаются не к звуковой карте, а к порту USB. В этом случае звук поступает на колонки в цифровом виде, а его декодирование производит небольшой Chipset, установленный в колонках.

МЕТОДЫ СЖАТИЯ ЗВУКОВОЙ ИНФОРМАЦИИ

Простейший способ цифрового представления сигналов называется импульсно-кодовой модуляцией (ИКМ) или РСМ (Pulse-Code Modulation). Поток данных РСМ представляет собой последовательность мгновенных значений или выборок (samples) в двоичном коде. Если применяемые преобразователи имеют линейную характеристику (мгновенное значение напряжения сигнала пропорционально коду), то данная модуляция называется линейной (Linear PCM). В случае ИКМ кодер и декодер не выполняют преобразования информации, а только занимаются упаковкой/распаковкой бит в байты и слова данных. Интенсивность потока (bit rate) определяется как произведение частоты дискретизации (sample rate) на разрядность и на число каналов. Аудио-CD дает поток 44 100 х16х2= 1411 200 бит/с (стерео).

Для реальных звуковых сигналов кодирование с линейной ИКМ является неэкономичным. Поток данных можно сократить, если использовать несложный алгоритм сжатия, применяемый в системе дельта-ИКМ (ДИКМ), она же DPCM (Differential Pulse-Code Modulation). Упрощенно этот алгоритм выглядит так: в цифровом потоке передаются не сами мгновенные отсчеты, а масштабированная разность реального отсчета и его значения, сконструированного кодеком по ранее сгенерированному им потоку данных. Разность передается с меньшим числом разрядов, чем сами отсчеты. В АДИКМ (адаптивная | ДИКМ, или ADPCM - Adaptive Differential Pulse-Code Modulation) масштаб разности определяется по предыстории - если разность монотонно растет, маcштаб увеличивается, и наоборот.

Конечно, восстановленный сигнал при таком представлении будет больше отличаться от исходного, чем при обычной ИКМ, но можно добиться существенного сокращения потока цифровых данных. ADPCM стала широко применяться при цифровом хранении и передаче аудиоинформации (например, в голосовых модемах). Алгоритм ADPCM с точки зрения процессора PC может быть реализован как программно, так и аппаратно средствами звуковой карты (модема).

Более сложные алгоритмы и высокая степень сжатия применяются в аудио- -кодеках MPEG. В кодере MPEG-1 входным потоком являются 16-битные выборки с частотой 48 кГц (профессиональная аудиотехника), 44,1 кГц (бытовая техника) или 32 кГц (применяется в телекоммуникациях).

Стандарт определяет три «слоя» (layer) сжатия - Layer I, Layer 2 и Layer 3, работающие один поверх другого.

Первоначальная компрессия осуществляется на основе психофизических свойств звуковосприятия. Здесь обыгрывается свойство маскирования звуков: если в сигнале имеются два тона с близкими частотами, существенно различающиеся по уровню, то более мощный сигнал замаскирует слабый (он не будет услышан). Пороги маскирования зависят от удаленности частот.

В MPEG весь диапазон звуковых частот разбивается на 32 поддиапазона (sub-band), в каждом поддиапазоне определяются наиболее мощные спектральные составляющие и для них вычисляются пороги частот маскирования. Эффекты маскирования от нескольких мощных составляющих суммируются. Действие маскирования распространяется не только на сигналы, присутствующие одновременно с мощным, но и на предшествующие ему за 2-5 мс (premasking) и последующие в течение до 100 мс (postmasking). Сигналы маскированных областей обрабатываются с меньшим разрешением, поскольку для них снижаются требования к отношению сигнал/шум. За счет этого «загрубления» и происходит сжатие. Компрессию на психофизической основе выполняет слой Layer 1.

Следующий этап (Layer 2) повышает точность представления и более эффективно упаковывает информацию. Здесь у кодера в работе находится «окно» длительностью 23 мс (1152 выборки).

На последнем этапе (Layer 3) применяются сложные наборы фильтров и нелинейное квантование. Наибольшую степень сжатия обеспечивает слой Layer 3, для которого при высокой достоверности декодирования достигается коэффициент сжатия 11:1.

МЕТОДЫ ОБРАБОТКИ ЗВУКОВОЙ ИНФОРМАЦИИ

При цифровом хранении легко реализуются многие эффекты, которые ранее требовали громоздких электромеханических или электроакустических устройств или сложной аналоговой электроники.

Прежде всего, это искусственная реверберация и эхо.

Известно, что в закрытом помещении (например, зале) от источника до слушателя доходит не только прямой звук, но и отраженный (многократно) от различных поверхностей (стен, колонн и т. п.). Отраженные сигналы приходят относительно прямого с различными задержками и затуханием. Это явление называется реверберацией. И Этим явлением при цифровой обработке сигнала можно управлять. При цифровом хранении легко реализуются многие эффекты, которые ранее требовали громоздких электромеханических или электроакустических устройств или сложной аналоговой электроники.

Прежде всего, это искусственная реверберация и эхо.

Известно, что в закрытом помещении (например, зале) от источника до слушателя доходит не только прямой звук, но и отраженный (многократно) от различных поверхностей (стен, колонн и т. п.). Отраженные сигналы приходят относительно прямого с различными задержками и затуханием. Это явление называется реверберацией. И Этим явлением при цифровой обработке сигнала можно управлять.

На основе смещения выборок можно делать и более сложные эффекты. В цифровой форме представления легко имитируется эффект Допплера - изменение частоты при быстром приближении источника звука к слушателю или удалении источника от слушателя. С этим эффектом сталкивались все - однотонный свисток приближающегося поезда звучит выше, а удаляющегося - ниже реального тона. В цифровом виде при воспроизведении накопление отставания выборок приведет к понижению тона, а сокращение отставания - к повышению.

Кроме фокусов с задержками возможно использование цифровой фильтрации - от реализации простейших темброблоков и эквалайзеров до «вырезания» голоса из песни (эффект «караоке»). Все определяется программным обеспечением и вычислительными ресурсами процессора.

На основе смещения выборок можно делать и более сложные эффекты. В цифровой форме представления легко имитируется эффект Допплера - изменение частоты при быстром приближении источника звука к слушателю или удалении источника от слушателя. С этим эффектом сталкивались все - однотонный свисток приближающегося поезда звучит выше, а удаляющегося - ниже реального тона. В цифровом виде при воспроизведении накопление отставания выборок приведет к понижению тона, а сокращение отставания - к повышению.

Кроме фокусов с задержками возможно использование цифровой фильтрации - от реализации простейших темброблоков и эквалайзеров до «вырезания» голоса из песни (эффект «караоке»). Все определяется программным обеспечением и вычислительными ресурсами процессора.

НАПРАВЛЕНИЯ СОВЕРШЕНСТВОВАНИЯ ЗВУКОВОЙ СИСТЕМЫ

В настоящее время фирмы Intel, Compaq и Microsoft предложили новую архитектуру звуковой системы ПК. Согласно этой архитектуре модули обработки звуковых сигналов выносятся за пределы корпуса ПК, в котором на них действуют электрические помехи, и размещаются, например, в колонках акустической системы. В этом случае звуковые сигналы передаются в цифровой форме, что значительно повышает их помехозащищенность и качество воспроизведения звука. Для передачи цифровых данных в цифровой форме предусматривается использование высокоскоростных шин USB и IEEE 1394.

Еще одним направлением совершенствования звуковой системы является создание объемного (пространственного) звука, называемого трехмерным, или 3D-Sound (Three Dimentional Sound). Для получения объемного звучания производится специальная обработка фазы сигнала: фазы выходных сигналов левого и правого каналов сдвигаются относительно исходного. При этом используется свойство мозга человека определять положение источника звука путем анализа соотношения амплитуд и фаз звукового сигнала, воспринимаемого каждым ухом. Пользователь звуковой системы, оборудованной специальным модулем обработки 3D-звука, ощущает эффект «перемещения» источника звука.

Новым направлением применения мультимедийных технологий является создание домашнего театра на базе ПК (PC-Theater), т.е. варианта мультимедийного ПК, предназначенного одновременно нескольким пользователям для наблюдения за игрой, просмотра образовательной программы или фильма в стандарте DVD. PC-Theater в своем составе имеет специальную многоканальную акустическую систему, формирующую объемный звук (Surround Sound). Системы Surround Sound создают в помещении различные звуковые эффекты, причем пользователь ощущает, что он находится в центре звукового поля, а источники звука - вокруг него. Многоканальные звуковые системы Surround Sound используются в кинотеатрах и уже начинают появляться в виде устройств бытового назначения.

В многоканальных системах бытового назначения звук записывается на двух дорожках лазерных видеодисков или видеокассет по технологии Dolby Surround, разработанной фирмой Dolby Laboratories. К наиболее известным разработкам в этом направлении относятся:(Surround) Pro Logic - четырехканальная звуковая система, содержащая левый и правый стереоканалы, центральный канал для диалогов и тыловой канал для эффектов.Surround Digital - звуковая система, состоящая из 5 + 1 каналов: левого, правого, центрального, левого и правого каналов тыловых эффектов и канала сверхнизких частот. Запись сигналов для системы выполняется в виде цифровой оптической фонограммы на кинопленке.

В отдельных моделях акустических колонок помимо стандартных регуляторов высоких/низких частот, громкости и баланса имеются кнопки для включения специальных эффектов, например, 3D-звука, Dolby Surround и др.


1.2 Практическая часть


.2.1 Структурная схема приемо-передающего устройства для беспроводной передачи сигнала

С ростом популярности беспроводных технологий расширяется и сфера их применения. В дипломной работе рассмотрено решение, построенное на принципе передачи медиаданных по беспроводным каналам и предназначенные для объединения ПК и компонентов бытовой аудиотехники в единый мультимедийный комплекс.

Время от времени у пользователей персональных компьютеров возникает необходимость подключить это устройство к стационарной аудиоаппаратуре, например к музыкальному центру. Конечно, наиболее простым вариантом в данном случае является подключение посредством кабеля. Однако у подавляющего большинства стационарных аудиокомпонентов разъемы для подключения источников сигнала располагаются на задней панели, добраться до которой обычно не так-то просто. Вторая, более серьезная проблема - отсутствие у многих недорогих магнитол и музыкальных центров входов для подключения внешних источников сигнала.

Одним из самых универсальных способов решения подобных проблем является использование маломощных радиопередатчиков, транслирующих звуковой сигнал в УКВ-диапазоне (возможность приема программ на этих частотах реализована практически во всех современных моделях магнитол и музыкальных центров). Стоит также отметить, что транслируемый подобным образом сигнал можно принимать сразу несколькими расположенными неподалеку радиоприемниками.

В случае взаимодействия цифрового плеера с аналоговой аппаратурой (магнитолами, музыкальными центрами и т.п.) передача звука в аналоговом виде является единственно возможным вариантом. Если же рассматривать взаимодействие двух цифровых устройств (например, компьютера и медиацентра), то в данном случае предпочтительнее использовать передачу звуковых данных по беспроводному каналу в цифровом виде.

Традиционным способом передача звука от звуковой карты вашего ПК на усилитель колонок осуществляется с помощью кабелей. В дипломном проекте рассмотрена беспроводная передача звука по лазерному лучу, на расстояние до нескольких метров.

На рис. 6 изображена структурная схема приемника аудио-сигнала:


Рис. 6 - Структурная схема приемника аудио-сигнала


На рис. 7 изображена структурная схема передатчика аудио-сигнала:


Рис. 7 - Структурная схема передатчика аудио-сигнала


Первичную обмотку непосредственно нужно подключить к выходу аудио сигнала. Минус аккумулятора подключаем к одному из концов вторичной обмотки, плюс аккумулятора подключаем напрямую к плюсу лазерного диода.

Второй конец вторичной обмотки через резистор 15-47 Ом подключаем к минусу лазерного диода.


1.2.2 Выбор элементной базы для построения устройства для исследования звуковой системы ПК

Для сбора устройства для беспроводной передачи сигнала необходимо следующее оборудование: источник аудио сигнала (персональный компьютер, музыкальный центр или мобильный телефон), сетевой трансформатор, мощностью 10-15 Вт, резистор от 5 до 20 Ом и аккумулятор.

Трансформатор можно использовать любой сетевой, мощность не более 20 Вт, содержащий вторичную обмотку на 6 или 12 В., либо намотать самому (первичная обмотка - 15 витков провода 0.8 мм., вторичная обмотка - 10 витков провода 0.8 мм.).

Для приемного устройства звукового сигнала понадобится фотодиод и усилитель низкой частоты.

Светодиод используется обычный. Его можно заменить лазером (значительно увеличит расстояние передачи), который нужно будет подключить через резистор 5 Ом., 0.5 Вт. Так же источник светового луча можно дополнить оптикой от DVD привода, тем самым сконцентрировать пучок света и увеличить расстояние передачи. Аккумулятор используется Li - Ion (литий - ионный) от мобильного телефона. Вместо него, можно использовать стабилизированный блок питания на 3.5 - 4 В., с силой тока не более 1 А. Параметры солнечного модуля: максимальное напряжение 14 В., при максимальном токе 100 мА. Модуль можно заменить любым другим фотоприемником.


1.2.3 Принцип работы устройства для исследования звуковой системы ПК

Из маломощного источника звука (персональный компьютер, мобильный телефон) подается звуковой сигнал на первичную обмотку трансформатора, выходит из вторичной обмотки, усиливается с помощью аккумулятора и поступает на светодиод / лазерный диод. Фотодиод, который служит приемником аудио сигнала, напрямую подключаем к входу усилителя мощности. Далее включаем музыку и направляем луч на фотоприемник. Луч света принимает солнечный модуль, который подключен к усилителю, а усилитель мощности усиливает слабый сигнал и в итоге получается достаточно качественный звук. Вместо лазера также можно применить обыкновенный светодиод, но в таком случае дальность передачи звукового сигнала будет не более 30 сантиметров, желательно применить белые или ультрафиолетовые светодиоды от зажигалок. При использовании лазерной указки, возможно передать звуковой сигнал на дистанцию до 15 метров, и заметьте качество звука достаточно хорошее. Передаваемый звук достаточно мощный на дистанции 7 метров, усилитель при полной громкости в нагрузку выдавал 80 процентов своей мощности.

Качество передаваемого сигнала довольно хорошее, искажение звука не наблюдается.


1.2.4 Применение устройства

Такое устройство нашло очень широкое применение в науке и технике, на основе именно такого передатчика и приемника основаны лазерные микрофоны для шпионажа.

Такой прибор отличный аксессуар для компьютера, например на компьютере играет музыка, а усилитель мощности не подключен кабелем к компьютеру, таким образом также можно передавать разговор, нужно просто подать на вход устройства сигнал от микрофона (с предварительным усилителем) и в итоге получается беспроводной телефон или рация, или отличный жучек для малых дистанций.

Глава 2. Охрана труда. Меры безопасности при техническом обслуживании средств вычислительной техники


.1 Производственная санитария и гигиена труда

запись микшер сигнал передача

В соответствии с ГОСТ 12.0.002 ССБТ «Термины и определения» производственная санитария - система организационных, санитарно-гигиенических мероприятий, технических средств и методов, предотвращающих или уменьшающих воздействие на работающих вредных производственных факторов до значений, не превышающих допустимые.

В комплекс вопросов, решаемых в рамках производственной санитарии и гигиены труда, входят:

обеспечение санитарно-гигиенических требований к воздуху рабочей зоны;

обеспечение параметров микроклимата на рабочих местах;

обеспечения нормативной естественной и искусственной освещенности;

защита от шума и вибрации на рабочих местах;

защита от ионизирующих излучений и электромагнитных полей;

обеспечение спецпитанием, защитными пастами и мазями, спецодеждой и спец. обувью, средствами индивидуальной защиты (противогазы, респираторы и т.п.);

обеспечение согласно норм санитарно-бытовыми помещениями и др.

Гигиена труда или профессиональная гигиена - раздел гигиены, изучающий воздействие трудового процесса и окружающей производственной среды на организм работающих с целью разработки санитарно-гигиенических и лечебно-профилактических нормативов и мероприятий, направленных на создание более благоприятных условий труда, обеспечение здоровья и высокого уровня трудоспособности человека.

В условиях промышленного производства на человека нередко воздействуют низкая и высокая температура воздуха, сильное тепловое излучение, пыль, вредные химические вещества, шум, вибрация, электромагнитные волны, а также самые разнообразные сочетания этих факторов, которые могут привести к тем или иным нарушениям в состоянии здоровья, к снижению работоспособности. Для предупреждения у устранения этих неблагоприятных воздействий и их последствий проводится изучение особенностей производственных процессов, оборудования и обрабатываемых материалов (сырье, вспомогательные, промежуточные, побочные продукты, отходы производства) с точки зрения их влияния на организм работающих; санитарных условий труда (метеорологические факторы, загрязнение воздуха пылью и газами, шум, вибрация, ультразвук и др.); характера и организации трудовых процессов, изменений физиологических функций в процессе работы.

Производственная санитария - система организационных, профилактических и санитарно-гигиенических мероприятий и средств, направленных на предотвращение воздействия на рабочих вредных производственных факторов.

Трудовая деятельность может выполняться на открытом воздухе и в помещениях.

Производственные помещения - замкнутые пространства в любых зданиях и сооружениях, где в течение рабочего времени постоянно или периодически осуществляется трудовая деятельность людей в различных видах производства. Человек может осуществлять работу в различных помещениях одного или нескольких зданий и сооружений. При таких условиях труда необходимо говорить о рабочем месте или рабочей зоне.

Производственная среда рабочего помещения определяется комплексом факторов. Наличие этих факторов (вредностей) в рабочей среде может повлиять не только на состояние организма, но и на производительность, качество, безопасность труда, привести к снижению работоспособности, вызвать функциональные изменения в организме и профессиональные заболевания.

В современных условиях автоматизации труда на организм действует комплекс слабо выраженных факторов, изучение аффекта взаимодействия крайне затруднено, поэтому, промсанитария и гигиена труда решают следующие задачи:

учет влияния факторов трудовой среды на здоровье и работоспособность;

совершенствование методов оценки работоспособности и состояния здоровья;

разработка организационно-технологических, инженерных, социально-экономических мероприятий по рационализации производственной среды;

разработка профилактических и оздоровительных мероприятий;

совершенствовать методику обучения.

Температура и влажность воздуха в помещении являются важнейшими параметрами, определяющими состояние комфорта внутри помещения.

Рекомендуемые значения температуры воздуха в помещении по различным стандартам находятся в пределах 20-22Со и 22-26Со. Еще один физический параметр внутренней атмосферы, непосредственно влияющий на теплообмен организма человека - это влажность воздуха, характеризующая его насыщенность водяными парами. Так недостаток влажности, менее 20 % относительной влажности, приводит к пересыханию слизистых оболочек, вызывает кашель. А превышение уровня влажности, более 65%, приводит к ухудшению теплоотдачи при испарении пота, возникает чувство удушья. Поэтому температура должна соотноситься с уровнем влажности.

Скорость воздуха определяется в рабочей зоне помещения, т.е. там, где находятся люди, а именно в пространстве от 0,15м. от пола до 1,8м по высоте и на расстоянии не менее 0,15м от стен. Скорость воздуха в рабочей зоне рекомендуется в пределах 0,13-0,25м/с. При меньшей скорости - душновато или даже жарковато, при большей - просто сквозняк, допускать который имеет смысл только при повышении температуры нормативных значений.

Анализ условий труда

Оценка условий труда проводится по специальной методике, на основе анализа уровней вредных и опасных факторов на данном рабочем месте.

Для проведения аттестации рабочего места также необходимо комплексно оценить условия труда.

Определение класса условий труда на рабочих местах проводится с целью:

установления приоритетности оздоровительных мероприятий;

создания банка данных по существующим условиям труда;

определения выплат и компенсаций за вредные условия труда.

Вредный производственный фактор - фактор среды и трудового процесса, который может вызвать снижение работоспособности, патологию (профессиональное заболевание), привести к нарушению здоровья потомства.

Вредными могут быть:

физические факторы: температура, влажность и подвижность воздуха, неионизирующие и ионизирующие излучения, шум, вибрация, недостаточная освещенность;

химические факторы: загазованность и запыленность воздуха;

биологические факторы: болезнетворные микроорганизмы;

факторы тяжести труда: физическая статическая и динамическая нагрузка; большое количество стереотипных рабочих движений, большое число наклонов корпуса, неудобная рабочая поза;

факторы напряженности труда: интеллектуальные, сенсорные, эмоциональные нагрузки, монотонность и продолжительность работы.

Опасный производственный фактор - фактор среды и трудового процесса, который может вызвать резкое ухудшение здоровья, травму, смерть.

Это: электрический ток, огонь, нагретая поверхность, движущиеся части оборудования, избыточное давление, острые кромки предметов, высота и.т.п.).

Все разнообразие условий труда, встречающееся на практике, подразделяется на четыре класса по уровням вредных и опасных факторов.

класс - оптимальный (совокупность факторов позволяет сохранять здоровье, поддерживать высокую работоспособность).

класс - допустимый (факторы среды и трудового процесса не превышают установленных норм, а возможные изменения функционального состояния организма, вызванные усталостью, утомлением, восстанавливаются во время регламентированного отдыха или к началу следующей смены).

и 2 классы соответствуют безопасным условиям труда.

класс - вредный (наличие вредных факторов, оказывающих неблагоприятное действие на организм работающего и/или его потомство).

На практике в первую очередь для оценки класса условий труда устанавливают, соответствует ли нормам санитарно-гигиенических показателей:

содержание вредных веществ в воздухе рабочей зоны;

значения параметров микроклимата;

уровни шума и вибрации, инфра- и ультразвука;

наличие электромагнитных и ионизирующих излучений;

параметры световой среды производственных помещений.

Удобство или неудобство рабочей позы определяется в первую очередь параметрами основных элементов рабочего места: стола, стула, оборудования и т.д. В настоящее время большинство из этих параметров стандартизированы и включены в санитарно-гигиенические и эргономические нормативно-правовые акты. Для того, чтобы обеспечивать свободную и удобную рабочую позу (оптимальные условия труда) элементы рабочего места должны удовлетворять требованиям санитарных норм и правил.


Производственное освещение, его характеристика

Производственное освещение предназначено для того, чтобы поддерживать нормальную освещенность на рабочем столе человека, ведь освещенность рабочего стола влияет на зрительную работу. Хорошая производственная освещенность позволяет лучше освещать предметы, улучшать их видимость за счет увеличения их яркости. Поэтому промышленное освещение и промышленные светильники должны максимально подходить конкретному человеку, работающему на определенном месте. Светильники наружного освещения менее критичны к таким критериям.

При организации освещенности рабочего места, необходимо, чтобы равномерно освещались все предметы рабочего стола. Если это не будет выполнено, то глаза, переходя из более освещенного места в более тёмное будут уставать.

Для хорошего освещения рабочего стола в помещении должно использоваться комбинированное освещения. Светлая окраска стен и потолков способствует лучшему освещению в помещении.

Производственное освещение подразумевает отсутствие всяких теней на рабочем столе. Наличие теней на рабочем столе способствует утомлению глаз рабочего, а вследствие этого и снижению работоспособности. Для уменьшения количества теней на рабочем столе применяют специальные светильники, которые отражают свет.

На ухудшение производственного освещения так же влияет блескость, то есть повышение яркости светящихся объектов. При появлении блескости ухудшаются зрительные функции. Улучшение зрительных функций при блескости достигается правильным положением отражающего светильника. Необходимо правильно подобрать угол положения светильника и его высоту. В местах, где это доступно, блестящие поверхности можно заменить на матовые.

Необходимо чтобы производственное освещение было постоянным. Дело в том, что при перепадах электричества в осветительном приборе глаза пере адаптируются под свет, и это тоже должным образом снижает производительность. Для того, чтобы добиться постоянного освещения, нужно стабилизировать плавающее напряжение. От крепления светильника также не мало что зависит. Если закрепить крепление, то перепады освещения будут менее ощутимы. Для большей уверенности в освещении, необходимо применять специальные схемы включения ламп.

Для правильного освещения на производстве необходимо выбрать подходящий спектр. Правильно подобранные цвета способствуют правильной светоотдачи предметов на рабочем столе. Лучшим вариантом является естественное освещение. При организации освещения необходимо использовать освещение, которое усиливает одни цвета и ослабляет другие.

Главным критерием осветительных приборов для производства является то, что они должны быть удобны и просты в производстве и обслуживании.

При освещении производственных помещений используют естественное освещение, создаваемое прямыми солнечными лучами и рассеянным светом небосвода и меняющемся в зависимости от географической широты, времени года и суток, степени облачности и прозрачности атмосферы; искусственное освещение, создаваемое электрическими источниками света, и совмещенное освещение, при котором недостаточное по нормам естественное освещение дополняют искусственным.

Конструктивно естественное освещение подразделяют на боковое (одно- и двухстороннее), осуществляемое через световые проемы в наружных стенах; верхнее - через аэрационные и зенитные фонари, проемы в кровле и перекрытиях; комбинированное - сочетание верхнего и бокового освещения.

Искусственное освещение по конструктивному исполнению может быть двух видов - общее и комбинированное. Систему общего освещения применяют в помещениях, где по всей площади выполняются однотипные работы (литейные, сварочные, гальванические цехи), а также в административных, конторских и складских помещениях. Различают общее равномерное освещение (световой поток распределяется равномерно по всей площади без учета расположения рабочих мест) и общее локализованное освещение (с учетом расположения рабочих мест).

По функциональному назначению искусственное освещение подразделяют на рабочее, аварийное и специальное, которое может быть охранным, дежурным, эвакуационным, эритемным, бактерицидным и др.

Рабочее освещение предназначено для обеспечения нормального выполнения производственного процесса, прохода людей, движения транспорта и является обязательным для всех производственных помещений.

Аварийное освещение устраивают для продолжения работы в тех случаях, когда внезапное отключение рабочего освещения (при авариях) и связанное с этим нарушение нормального обслуживания оборудования могут вызвать взрыв, пожар, отравление людей, нарушение технологического процесса и т.д. Минимальная освещенность рабочих поверхностей при аварийном освещении должна составлять 5% нормируемой освещенности рабочего освещения, но не менее 2лк.

Эвакуационное освещение предназначено для обеспечения эвакуации людей из производственного помещения при авариях и отключении рабочего освещения; организуется в местах, опасных для прохода людей: на лестничных клетках, вдоль основных проходов производственных помещений, в которых работают более 50 чел. Минимальная освещенность на полу основных проходов и на ступеньках при эвакуационном освещении должна быть не менее 0,5лк, на открытых территориях - не менее 0,2лк.

Охранное освещение устраивают вдоль границ территорий, охраняемых специальным персоналом. Наименьшая освещенность в ночное время 0,5лк.

Сигнальное освещение применяют для фиксации границ опасных зон; оно указывает на наличие опасности, либо на безопасный путь эвакуации.


2.2 Требования к организации и оборудованию рабочего места техника


Основными элементами рабочего места техника являются: рабочий стол, рабочий стул (кресло), дисплей, клавиатура.

Требования к рабочему столу:

Конструкция рабочего стола должна обеспечить возможность размещения на рабочей поверхности необходимого комплекта оборудования для наладки с учетом характера выполняемой работы. Рабочие столы по конструктивному исполнению подразделяют на регулируемые и нерегулируемые по изменению высоты рабочей поверхности.

Регулируемая высота рабочей поверхности стола должна изменяться в пределах от 680 до 800мм. Механизмы для регулирования высоты рабочей поверхности стола должны быть легко досягаемыми в положении сидя, иметь легкость управления и надежную фиксацию.

Высота рабочей поверхности стола при нерегулируемой высоте должна составлять 725 мм. Размеры рабочей поверхности стола должны быть: глубина - не менее 600 (800 ) мм, ширина- не менее 1200 (1600) мм.

Рабочая поверхность стола не должна иметь острых углов и краев. Покрытие рабочей поверхности стола должно быть из диффузно отражающего материала с коэффициентом отражения 0,45-0,50.

Требования к рабочему стулу (креслу):

Рабочий стул (кресло) должен обеспечивать поддержание физиологически рациональной рабочей позы техника в процессе трудовой деятельности, создавать условия для изменения позы с целью снижения статического напряжения мыщц шейно-плечевой области и спины, а также для исключения нарушения циркуляции крови в нижних конечностях. Рабочий стул должен быть подъемно-поворотным и регулируемым по высоте и углам наклона сиденья и спинки, а также расстоянию спинки от переднего края сиденья.

В целях снижения статического напряжения мышц рук следует использовать стационарные или съемные подлокотники, регулирующиеся по высоте и углам наклона сиденья и спинки, а также расстоянию спинки от переднего края сиденья.

Регулирование каждого положения должно быть независимым, легко осуществимым и иметь надежную фиксацию.

Поверхность сиденья должна иметь ширину и глубину не менее 400 мм. Должна быть предусмотрена возможность изменения угла наклона поверхности сиденья от 15º вперед до 5º назад. Высота поверхности сиденья должна регулироваться в пределах от 400 до 550мм.

Угол наклона спинки в вертикальной плоскости должен регулироваться в пределах 0° ± 30º от вертикального положения. (+ Место, полки, шкафы, для хранения инструмента и запасных деталей, плат и т.д.)

Безопасность труда при работе с электронной аппаратурой

Конструкция электрооборудования должна соответствовать условиям его эксплуатации, обеспечивать защиту персонала от соприкосновения с токоведущими частями и оборудования - от попадания внутрь посторонних предметов и воды.

Наиболее распространёнными техническими средствами защиты являются защитное заземление и зануление.

При пользовании средствами вычислительной техники и периферийным оборудованием каждый работник должен внимательно и осторожно обращаться с электропроводкой, приборами и аппаратами и всегда помнить, что пренебрежение правилами безопасности угрожает и здоровью, и жизни человека.

Во избежание поражения электрическим током необходимо твердо знать и выполнять следующие правила безопасного пользования электроэнергией:

. Необходимо постоянно следить на своем рабочем месте за исправным состоянием электропроводки, выключателей, штепсельных розеток, при помощи которых оборудование включается в сеть, и заземления. При обнаружении неисправности немедленно обесточить электрооборудование, оповестить администрацию. Продолжение работы возможно только после устранения неисправности.

. Во избежание повреждения изоляции проводов и возникновения коротких замыканий не разрешается:

а) вешать что-либо на провода;

б) закладывать провода и шнуры за газовые и водопроводные трубы, за батареи отопительной системы;

в) выдергивать штепсельную вилку из розетки за шнур, усилие должно быть приложено к корпусу вилки.

. Для исключения поражения электрическим током запрещается:

а) часто включать и выключать компьютер без необходимости;

б) прикасаться к экрану и к тыльной стороне блоков компьютера;

в) работать на средствах вычислительной техники и периферийном оборудовании мокрыми руками;

г) работать на средствах вычислительной техники и периферийном оборудовании, имеющих нарушения целостности корпуса, нарушения изоляции проводов, неисправную индикацию включения питания, с признаками электрического напряжения на корпусе

д) класть на средства вычислительной техники и периферийное оборудование посторонние предметы.

. Запрещается под напряжением очищать от пыли и загрязнения электроооборудование.

. Пользоваться неисправным электрическим инструментом.

. Запрещается проверять работоспособность электрооборудования в неприспособленных для эксплуатации помещениях с токопроводящими полами, сырых, не позволяющих заземлить доступные металлические части.

. Ремонт электроаппаратуры производится только специалистами-техниками с соблюдением необходимых технических требований.

. Недопустимо под напряжением проводить ремонт средств вычислительной техники и периферийного оборудования.

. Во избежание поражения электрическим током, при пользовании электроприборами нельзя касаться одновременно каких-либо трубопроводов, батарей отопления, металлических конструкций, соединенных с землей.

. При обнаружении оборвавшегося провода необходимо немедленно сообщить об этом администрации, принять меры по исключению контакта с ним людей. Прикосновение к проводу опасно для жизни.

. Спасение пострадавшего при поражении электрическим током главным образом зависит от быстроты освобождения его от действия током.

Во всех случаях поражения человека электрическим током немедленно вызывают врача. До прибытия врача нужно, не теряя времени, приступить к оказанию первой помощи пострадавшему.

Обеспечение электробезопасности

Электробезопасность - система организационных и технических мероприятий и средств, обеспечивающих защиту людей от вредного и опасного воздействия электрического тока, электрической дуги, электромагнитного поля и статического электричества.(ГОСТ 12.1.009-82. ССБТ. Электробезопасность. Термины и определения).

При пользовании средствами вычислительной техники и периферийным оборудованием каждый работник должен внимательно и осторожно обращаться с электропроводкой, приборами и аппаратами и всегда помнить, что пренебрежение правилами безопасности угрожает и здоровью, и жизни человека

. Во избежание повреждения изоляции проводов и возникновения коротких замыканий не разрешается:

а) вешать что-либо на провода;

б) закрашивать и белить шнуры и провода;

в) закладывать провода и шнуры за газовые и водопроводные трубы, за батареи отопительной системы;

г) выдергивать штепсельную вилку из розетки за шнур, усилие должно быть приложено к корпусу вилки.

. Для исключения поражения электрическим током запрещается:

а) часто включать и выключать компьютер без необходимости;

б) прикасаться к экрану и к тыльной стороне блоков компьютера;

в) работать на средствах вычислительной техники и периферийном оборудовании мокрыми руками;

г) работать на средствах вычислительной техники и периферийном оборудовании, имеющих нарушения целостности корпуса, нарушения изоляции проводов, неисправную индикацию включения питания, с признаками электрического напряжения на корпусе

д) класть на средства вычислительной техники и периферийном оборудовании посторонние предметы.

. Запрещается под напряжением очищать от пыли и загрязнения электрооборудование.

. Запрещается проверять работоспособность электрооборудования в неприспособленных для эксплуатации помещениях с токопроводящими полами, сырых, не позволяющих заземлить доступные металлические части.

. Ремонт электроаппаратуры производится только специалистами-техниками с соблюдением необходимых технических требований.

Основными причинами электротравматизма являются:

. Неожиданное возникновение напряжения там, где в нормальных условиях его не должно быть. Под напряжением могут оказаться корпуса электрического оборудования, строительные конструкции и приспособления (полы, подмости, металлические леса и др.). Чаще всего это происходит в результате пробоя или повреждения изоляции кабелей, проводов или обмоток электрических машин и аппаратов при присоединении токоведущих частей с указанными конструкциями.

. Прикосновение человека к неизолированным токоведущим частям.

. Попадание человека в зону короткого замыкания фазы на землю.

При этом на земле возникает радиальное (шаговое) напряжение.

При пробое изоляции на землю в электрической установке или при падении на землю случайно оборванного электропровода, а также в местах расположения заземлителя электроустановок или грозозащитного устройства земля может оказаться под электрическим напряжением. В этих случаях образуется зона растекания токов замыкания в радиусе до 20 м от заземлителя. Между двумя точками поверхности земли в этой зоне, отстоящими друг от друга на расстоянии одного шага (0,8 м), образуется шаговое напряжение.

Если человек оказывается в зоне растекания токов замыкания и проходит к заземлителю или удаляется от него, шаговое напряжение изменяется в соответствии с изменением сопротивления грунта. Наибольшей величины шаговое напряжение достигает при подходе человека к заземлителю, а наименьшей - при нахождении от него на расстоянии 20 м и более. На величину шагового напряжения влияет также и ширина шага человека. Чем шире шаг, тем большее напряжение испытывает человек, так как при этом увеличивается разность потенциалов между двумя точками, на которых находятся в данный момент ноги человека. Во избежание поражения электрическим током человек из зоны растекания токов замыкания должен выходить так, чтобы его шаги были в пределах 25-30 см. В этом случае напряжение будет наименьшим. Опасным для жизни человека является шаговое напряжение 40 В.

К числу прочих причин, приводящих к электротравматизму, относятся несогласованные и ошибочные действия персонала: оставление под напряжением без надзора электроустановок, допуск к работам, связанным с электричеством, лиц недостаточной квалификации, отсутствие заземления и др.


Требования, предъявляемые к ручному инструменту

Работники должны знать, что в ходе выполнения работ с подручными инструментами чаще всего можно получить следующие травмы:

ранение ног упавшим инструментом;

ранение глаз отлетающей стружкой или осколками режущего инструмента;

ранение при неправильном креплении режущего инструмента.

В процессе работы необходимо:

положение инструмента на рабочем месте должно обеспечивать невозможность его скатывания или падения;

не рекомендуется класть инструмент на перила ограждений или на не огражденный край площадки лесов и подмостков;

После выполнения работы работник обязан:

собрать весь ручной инструмент;

привести в порядок свою спецодежду.

После окончания работы работник обязан убрать рабочее место.

Паяльник - основное "орудие труда" техника, а учитывая широкое использование весьма "нежных" полевых транзисторов и КМОП-микросхем, к нему предъявляются весьма жёсткие требования.

Наиболее распространённый нагревательный элемент паяльника - нихромовая спираль, изолированная от стержня тонкой слюдяной трубочкой. У слюды очень большая диэлектрическая проницаемость (недаром слюдяные конденсаторы считаются самыми лучшими), поэтому все высоковольтные наводки, поступающие на спираль паяльника по проводам питания, практически беспрепятственно проходят на его жало. Если при этом жало паяльника касается дорожки, к которой припаян полевой транзистор (что бывает весьма часто), "жизнь" этого транзистора - в большой опасности. Ещё один недостаток подобных паяльников-малая прочность (даже слабые боковые усилия при выпайке элементов, не говоря уже про удары, могут вывести его из строя).

Очевидно, что постоянно работать таким паяльником неудобно. Поэтому многие техники идут на различные ухищрения:

питают паяльник пониженным напряжением (12...36В). Такое напряжение безопасно для полевых транзисторов, но для паяльника требуется свой источник с соответствующим напряжением;

увеличивают толщину диэлектрика (слюды), что ухудшает передачу тепла от нагревательной спирали к жалу паяльника;

используют в качестве нагревательного элемента другие материалы.

Отечественные резисторы серии ПЭВ, это готовые нагревательные элементы для паяльника мощностью 30...60Вт! Они безболезненно выдерживают нагрев до 500...600°С, а это в несколько раз больше температуры плавления припоя. Облегчает такое "нестандартное" использование резисторов и то, что у резисторов ПЭВ-7,5 внутреннее отверстие диаметром 5 мм. т.е. такого же диаметра, как и жало стандартного 40-ваттного паяльника. Толщина керамического диэлектрика резистора - около 3 мм, это не идёт ни в какое сравнение со слоем слюды толщиной 8 доли миллиметра. Как показала практика, вывести чувствительные элементы из строя таким паяльником, даже при его питании от сети 220 В, практически невозможно. К тому же, используя резистор, можно забыть и про пробой диэлектрика (со "слюдяными" паяльниками это случается весьма часто). Ещё один плюс "резисторного" паяльника - большой ряд номиналов (сопротивлений) резисторов, так что подобрать нужный не составит труда, а при выходе нагревателя из строя можно просто поменять резистор.

Для паяльника на 40Вт, работающего от автомобильного аккумулятора, сопротивление резистора должно быть около 5,1Ом (на нём будет выделяться мощность около 30Вт). Это с учётом сопротивления проводов (примерно 1 Ом). При таком сопротивлении паяльник нормально разогрет, если напряжение аккумулятора выше 12В. и не перегревается при максимальном (14,4В).


2.3 Требования пожарной безопасности


Главным условием для любой организации, предприятия, особенно для тех, кто только зарегистрировался, является пожарная безопасность. На первом этапе потребуют разрешение от пожарных служб. Поэтому требования пожарной безопасности должны быть выполнены независимо от формы организации, а также ее "возраста". На предприятии должны быть выполнены основные мероприятия по пожарной безопасности, а именно:

определить и назначить ответственное лицо за пожарную безопасность вашей фирмы;

обеспечить всем необходимым противопожарным оборудованием помещение;

введение обязательного противопожарного режима;

ознакомить сотрудников с правилами поведения при пожаре, предоставить возможность ознакомиться с элементарным оборудованием, таким как огнетушители;

утвердить инструкцию о пожарной безопасности;

составить план-схему помещения для эвакуации людей в случае пожара;

на территории предприятия установить в обязательно порядке, знаки пожарной опасности в соответствии с требованиями пожарной безопасности.

Помимо обеспечения информационной и технической базы предприятия, должно быть все задокументировано. Прежде чем начать вести специальную документацию нужен работник, который будет ответственным за противопожарный режим на предприятии в целом, это руководитель предприятия.

Но для этого, в документах следует указать:

Ответственное лицо, которое занимается обучением и подготовкой персонала по вопросам пожарной безопасности;

Отведенное место для курения;

Правила при которых, сотрудники используют бытовые приборы прибегая к основным требованиям пожарной безопасности;

Порядок действий, к которым должен прибегнуть персонал, при возникновении пожара на предприятии.

Также необходимо:

Составление плана для эвакуаций работника на случай пожара;

Техническо-инженерное обеспечение; расчет приблизительного времени на эвакуацию людей;

Проведение консультаций относительно пожарной безопасности;

Наиболее частыми причинами пожаров, возникающих при эксплуатации электроустановок являются: короткие замыкания в электропроводниках и электрическом оборудовании; воспламенение горючих материалов, находящихся в непосредственной близости от электроприемников, включенных на продолжительное время и оставленных без присмотра; токовые перегрузки электропроводок и электрооборудования; большие переходные сопротивления в местах контактных соединений; появление напряжения на строительных конструкциях и технологическом оборудовании, попадание раскаленных частиц нити накаливания на легкогорючие материалы и др.

Средства тушения пожара

К ним относятся: гидранты, огнетушители, средства покрытия огня, песок и другие подручные материалы. Наиболее традиционным средством тушения пожаров является гидрант, который устанавливается внутри всех общественных зданий, за исключением складов, где находятся материалы, не смешивающиеся с водой, - бензин, солярка. Он должен находиться в легкодоступных местах и всегда быть готовым к использованию.

Правила поведения при возгорании:

Сообщите в единую службу спасения по телефону 01;

Выведите на улицу сотрудником находящихся в помещении;

Попробуйте самостоятельно потушить пожар, используя подручные средства (воду, плотную ткань, от внутренних пожарных кранов в зданиях повышенной этажности и т.п.);

При опасности поражения электрическим током отключите электроэнергию (автоматы в щитке на лестничной площадке);

Помните, что легковоспламеняющиеся жидкости тушить водой неэффективно. Лучше всего воспользоваться огнетушителем, стиральным порошком, а при его отсутствии мокрой тряпкой;

Во время пожара необходимо воздержаться от открытия окон и дверей для уменьшения притока воздуха;

Если в помещении сильно задымлено и ликвидировать очаги горения своими силами не предоставляется возможным, немедленно покиньте помещение, прикрыв за собой дверь;

Требования безопасности при выполнении электромонтажных работ

Требования безопасности при пайке

Работники, выполняющие пайку изделий паяльником, должны иметь II группу по электробезопасности. Для поддержания паяльника в исправном состоянии, проведения периодических проверок и испытаний работодатель должен приказом по организации назначить работника, имеющего III группу электробезопасности. При пайке крупногабаритных изделий следует применять паяльник со встроенным отсосом.

Паяльник для пайки изделий перед началом работ необходимо:

проверить на соответствие его классу защиты от поражения электрическим током;

проверить внешним осмотром на исправное состояние кабеля и штепсельной вилки, целостность защитного кожуха и изоляции рукоятки;

проверить на работоспособность встроенных в его конструкцию отсосов;

проверить на работоспособность механизированную подачу припоя в случаях ее установки в паяльнике.

Паяльник должен проходить проверку и испытания в сроки и объемах, установленных нормативной документацией.

При выполнении пайки в замкнутых объемах паяльник должен быть напряжением не выше 12 В. Паяльник на рабочих местах должен устанавливаться на огнезащитные подставки, исключающие его падение. Кабель паяльника должен быть защищен от случайного механического повреждения и соприкосновения с горячими деталями. Паяльник, находящийся в рабочем состоянии, постоянно должен находиться в зоне действия местной вытяжной вентиляции. Излишки припоя и флюса с жала паяльника следует снимать с применением материалов, указанных в технологической документации (хлопчатобумажные салфетки, асбест и другие). При пайке интегральных микросхем должны использоваться оптические приборы, преимущественно бинокулярные стереоскопические микроскопы с телевизионными экранами.

Исходя из выше сказанного, любой прогресс в науке или технике, наряду с ярко выраженными безусловно положительными явлениями, неизбежно влечет за собой и отрицательные стороны. Вопросы компьютеризации общества сейчас стоят в ряду множества факторов, влияющих на здоровье людей. Именно поэтому так важно оценить степень влияния информационных технологий на здоровье человека.

Последнее время часто приходится слышать о вредном воздействии компьютера как одного из средств современных информационных технологий на организм пользователя. Степень безопасности пользователя компьютерной техникой регулируется множеством различных международных стандартов, которые год от года становятся все строже и строже. Последние исследования ученых показали, что не столько сама компьютерная техника является непосредственным фактором негативного воздействия на организм человека, сколько неправильное ее расположение, несоблюдение элементарных гигиенических норм, касающихся труда и отдыха.

Исследуя проблему влияния компьютера на здоровье человека, становится очевидным, что средства современных информационных технологий безусловно влияют на организм пользователя и "общение" с компьютером требует жесткой регламентации рабочего времени и разработки санитарно-гигиенических мероприятий по уменьшению и профилактике такого рода воздействий.

Заключение


В дипломной работе проведен анализ работы устройства для исследования звуковой системы ПК с помощь диодной пластины. Основное назначение звуковой системы заключается в записи звуковых сигналов, поступающих от внешних источников, путем преобразования входных аналоговых звуковых сигналов в цифровые и последующего сохранения на жестком диске, а также воспроизведение записанных звуковых данных с помощью внешней акустической системы, которые получили в настоящее время самое широкое распространение в различных устройствах вычислительной техники.

Для построения устройства для беспроводной передачи сигнала использовали источник аудио сигнала, сетевой трансформатор, мощностью 10-15 Вт, резистор от 5 до 20 Ом и аккумулятор.

Для приемного устройства звукового сигнала применили фотодиод и усилитель низкой частоты.

Такое устройство нашло очень широкое применение в науке и технике, на основе именно такого передатчика и приемника основаны лазерные микрофоны для шпионажа.

Такой прибор отличный аксессуар для компьютера, например на компьютере играет музыка, а усилитель мощности не подключен кабелем к компьютеру, таким образом также можно передавать разговор, нужно просто подать на вход устройства сигнал от и в итоге получается беспроводной телефон или рация, или отличный жучек для малых дистанций.

Вопрос охраны труда является одним из важнейших на современном этапе жизни нашего общества, увеличение количества профессиональных заболеваний, несчастных случаев на производстве, приводящих к травмам а иногда и к гибели людей, всё это заставляет задуматься о совершенстве нашего законодательства в области охраны труда, и думается, что нашим законодательным, исполнительным и судебным органам государственной власти предстоит ещё много работы в этом направлении.

В части диплома, связанной с охраной труда, рассмотрены основные меры безопасности при техническом обслуживание электронной техники:

производственная санитария и гигиена труда,

производственное освещение,

требования к организации и оборудованию рабочего места техника,

безопасность труда при работе с электронной аппаратурой,

обеспечение электробезопасности, требования,

предъявляемые к ручному инструменту,

требования пожарной безопасности,

безопасности при выполнении электромонтажных работ

Список использованной литературы


1.Петров В.Н. Информационные системы. СПб., 2002.

2.Савельев А.Я. Основы информатики. М., 2001.

.Глушаков С.В. Мельников И.В. Персональный компьютер. Учебный курс. - Харьков: Фалио; М.: ООО «Фирма «Издательство ACT», 2000. - 499 с.

.Норенков И.П., Трудоношин В.А. Телекоммуникационные технологии. М., 2000.

.Могилев А.В., Пак Н.И., Хеннер Е.К. Информатика. М., 2000.

.Акдосянов В.И. Савельев П.В. Мультимедиа - что это такое? // Компьютер пресс вып.5, 1993. - с.15.

.Грановский Ю.В. Аппаратная поддержка мультимедиа. // Компьютер пресс вып.2, 1995. - с.20.

.Кононович А.В. Музыкальные редакторы. // Software вып.38,1997. - с. 30.

9.Статьи Веб-сайта журнала «АудиоМагазин» / <http://www.audiomagazine.ru/>

.Статьи Веб-сайта журнала «Наука и жизнь» / <http://www.nkj.ru/>

.Статьи Веб-сайта «Издательство 625» / <http://www.625-net.ru/>

.Статьи Веб-сайта «Соmponent.ru» / <http://www.component.ru>/

.В.П. Быстров. Сборник нормативных документов и актов по охране труда предприятия, учреждения, учебного заведения. Симферополь. 2001г.-240 с.

.Б.А. Князевский Охрана труда. М. «Эксмо».1992г.-260 с.

.В.С. Шкрабак, Г.К. Казлаускас. Охрана труда. М.: «Эксмо», 1989г. -150 с.

.ГОСТ 12.1.004-91 «Пожарная безопасность».

.ГОСТ 12.1.003-83 «Шум. Общие требования безопасности».

.ГОСТ Р.50923 - 96. Рабочее место техника, Общие эргономические требования, и требования к произвольной Среде. Методы измерения. Гигиенические критерии оценки условий труда.

.Гост 12.1.030-81 «Электробезопасность».

.Е.Я. Юдин и др. Борьба с шумом на производстве: Справочник. М.: Машиностроение, 1988 г.



Министерство просвещения ПМР ГОУ «Тираспольский Техникум Информатики и Права» Дипломная рабо

Больше работ по теме:

КОНТАКТНЫЙ EMAIL: [email protected]

Скачать реферат © 2017 | Пользовательское соглашение

Скачать      Реферат

ПРОФЕССИОНАЛЬНАЯ ПОМОЩЬ СТУДЕНТАМ