Экологическая экспертиза и оценка воздействия на окружающую среду предприятия по производству керамической плитки

 

Федеральное государственное автономное

образовательное учреждение

высшего профессионального образования

«СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Политехнический институт

Кафедра «Инженерная экология и безопасность жизнедеятельности»









Курсовой проект

Экологическая экспертиза и оценка воздействия на окружающую среду предприятия по производству керамической плитки



Выполнил: Иргит С.Р

Группа ТЭ 09-09Б

Принял: Комонов С.В.







Красноярск, 2013г


СОДЕРЖАНИЕ


Ведение

. Охрана атмосферного воздуха от загрязнения

.1 Общие сведения о предприятии

1.2 Краткая характеристика физико-географических и климатических условий района и площадки строительства

.3 Характеристика района расположения предприятия по уровню загрязнения атмосферного воздуха

.4 Характеристика источника выбросов загрязняющих веществ в атмосферу

1.5 Обоснование данных о выбросах вредных веществ

.6 Комплекс мероприятий по уменьшению выбросов в атмосферу

1.7 Характеристика мероприятий по регулированию выбросов в периоды особо неблагоприятных метеорологических условий

.8 Расчет и анализ приземных концентраций загрязняющих веществ

1.9 Предложения по установлению ПДВ и ВСВ

1.10 Методы и средства контроля за состоянием воздушного бассейна

1.11 Обоснование принятого размера санитарно-защитной зоны

.12 Мероприятия по защите от шума и вибрации

2. Охрана поверхностных и подземных вод от загрязнения и истощения

2.1 Характеристика современного состояния водного объекта

2.2 Мероприятия по охране и рациональному использованию водных ресурсов

2.3 Водопотребление и водоотведение предприятия

.4 Количество и характеристика сточных вод3

.5 Обоснование проектных решений по очистке сточных вод

.6 Баланс водопотребления и водоотведения по предприятию

2.7 Показатели использования водных ресурсов в проектируемом производстве

2.8 Контроль водопотребления и водоотведения

3. Восстановление (рекультивация) земельного участка, использование плодородного слоя почвы, охрана недр и животного мира

.1 Рекультивация нарушенных земель, использование плодородного слоя почвы

3.2 Мероприятия по охране почв от отходов производства

.3 Охрана недр

.4 Охрана животного мира

Заключение

Использованная литература



Введение


Керамическими называют искусственные каменные материалы, изготавливаемые из глин и их смесей с минеральными и органическими добавками путем формования и последующего обжига. На древнегреческом языке «керамос» означало гончарную глину, а также изделий из обожженной глины. Позже «керамикой» начали называть все изделия из глиняных масс.

Распространенность глин в природе, а также большая прочность, значительная долговечность, красивый внешний вид многих керамических изделий стали причинами широкого применения керамических материалов почти во всех конструктивных элементах зданий и сооружений. Например, керамическая плитка, которой облицовывают санитарные узлы и кухни в жилых зданиях, операционные в больницах, душевые, бани и прачечные, цехи пищевых предприятий, станции метрополитена и др.

Отделка вертикальных и горизонтальных поверхностей плиткой предохраняет поверхности от увлажнения, механических повреждений, воздействия огня, химических веществ; обеспечивает поддержку требуемых норм чистоты и удобства уборки; придает поверхностям красивый внешний вид.

В настоящее время промышленность строительной керамики является одной из ведущих отраслей промышленности строительных материалов. Индустрия основана на добыче и переработке сырья, причем используется преимущественно привозное сырье.

На заводах строительной керамики наиболее распространены следующие способы производства керамических изделий:

экструзионный (пластический, полужесткий, жесткий);

компрессионный (полусухого прессования).

Наименьшее распространение имеет литьевой способ (шликерный).

Механизация и автоматизация производства, повышение производительности труда в керамической промышленности были достигнуты благодаря применению высокопроизводительных машин и агрегатов, обеспечивающих возможность организации поточно-автоматической работы отдельных производственных участков. Но влияние этих машин и агрегатов на окружающую среду существенно.

На каждом этапе производства образуются свои выбросы. Будь то газы, выбрасываемые в атмосферу от автотранспорта, при доставке сырья или от топок, которые нужны для работы некоторого оборудования. Или пыль, образующаяся при разгрузке и внутризаводской транспортировки сырья, или примеси, образованные при очистке сырья и т.д.

Во всем мире возникла проблема инвентаризации выбросов от работы предприятий и технологического оборудования в частности. Для этого была создана структура, названная оценка воздействия предприятия на окружающую среду.

"Оценка воздействия на окружающую среду - вид деятельности по выявлению, анализу и учету прямых, косвенных и иных последствий воздействия на окружающую среду планируемой хозяйственной и иной деятельности в целях принятия решения о возможности или невозможности ее осуществления." (Закон об охране окружающей среды).

Оценка воздействия на окружающую среду (ОВОС) представляет собой процедуру, включающую определение возможных неблагоприятных воздействий на окружающую среду и их социально-экологических последствий, разработку мер по уменьшению и/или предотвращению неблагоприятных воздействий.

Раздел ОВОС обоснований выполняется в соответствии с положениями «Временной инструкции по экологическому обоснованию хозяйственной деятельности в предпроектных и проектных материалах», утвержденной Минприроды России 16.06.92 г. (с последующими изменениями и дополнениями).

Раздел "Оценка воздействия на окружающую среду" (ОВОС) разрабатывается на стадии обоснований инвестиций в строительство и основывается на материалах инженерно-экологических изысканий <#"justify">1.Охрана атмосферного воздуха от загрязнений


Основными загрязнителями окружающей среды являются предприятия, автотранспорт и сельскохозяйственная деятельность. Основные загрязнители (25 млрд тонн): диоксид серы, пыль, оксид азота, оксид углерода, углеводороды. В результате их реакции с компонентами природной среды возникают смоги, кислотные дожди, деградации почв, сукцессии растительного покрова, изменения климата и рельефа.

Для уменьшения количества выбросов на предприятиях используют очистные установки и ведется контроль количества выбросов, разрабатываются технологические линии с минимальным количеством отходов.


.1Основные сведения о предприятии


Завод по производству керамической плитки для пола, размером 150×150 мм. Предприятие находится в г.Красноярске, ул.Брянская 2-я 42.

Имеет котлованное глинохранилище 70-80 м, которое на зиму утепляется стружкой, опилками или матами с утеплителем. Основные процессы производства: сушкаутильный обжигглазурованиеполитой обжиг.

Основное оборудование:

1.Глинорыхлитель СМ-1031

2.Питатель СМК-78

.Гладкие вальцы СМК-102А

.Шахтная мельница ММТ 1300/740

.Шаровая мельница

.Сито- бурат СМ-237М

.Пропеллерная мешалка СМ-489Б

.Феррофильтр

.Вибрационное сито

.Распылительная сушилка СМК-148

.Проточно-конвейерная линия СМК-132

Глину обрабатывают механическим способом. Этот способ заключается в том, что структуру сырья разрушают, усредняют сырье по вещественному составу и влажности за счет воздействия рабочих органов механизмов. Механический способ обработки наиболее распространен на предприятиях керамической промышленности. Со склада глина подается многоковшовым экскаватором в глинорыхлитель.

Глинорыхлитель СМ-1031 предназначен для измельчения крупных и мерзлых комьев глины над ящичным питателем. Имеем роторы, которые вращаясь над питателем и зубьями разрушают комья глины. Через решетку глина подается на транспортирующий орган питателя.


Технические характеристики глинорыхлителя СМ-1031Б

НаименованиеПоказательПроизводительность, м3/ч25Вместимость бункера, м34,25Размер кусков готового материала, мм170Частота вращения вала, с-10,15Диаметр окружности, описываемой билами, мм1100Расстояние между осями бил, мм200Установленная мощность, кВт10Габаритные размеры, ммдлина4574Ширина1800Высота1180Масса, кг3200

Питатель СМК-78 обеспечивает непрерывную и равномерную подачу глины. Для каждого вида сырья применяют отдельный питатель, который настроен на определенную производительность в зависимости от процентного содержания данного материала в шихте.


Технические характеристики ящичного питателя СМК-78

НаименованиеПоказательПроизводительность,м3/ч35,5Число камер2Вместимость камер, м32,9Скорость ленты, м/мин2,5Частота вращения бильного вала, с-11,5Установленная мощность, кВт4Габаритные размеры, ммДлина6125Ширина2530Высота1630Масса, кг4600

Гладкие вальцы СМК-102А применяют для измельчения влажной глины и материалов средней прочности-кварца полевого шпата, известняка, шамота. вальцы измельчают материал раздавливанием, истиранием или изгибом валка, вращающимися один навстречу другому с разной скоростью. При измельчении влажной глины вальцы работают с максимальной эффективностью при зазоре между ними 1 мм и при влажности близкой к формовочной.


Технические характеристики гладких вальцов СМК-102А

НаименованиеПоказательПроизводительность (по разрыхленной глине при зазоре 1 мм), м3/ч25Размеры валков, ммДиаметр1000Длина1000Частота вращения валков, с-1Быстроходного14,66Тихоходного3,16Установленная мощность, кВт123,8Габаритные размеры, ммДлина5690Ширина4160Высота1820Масса, кг13000После дробления глина через питатель на конвейере поступает в шахтную мельницу. Шахтная мельница ММТ 1300/740 агрегат для одновременного помола и сушки глины. Работает мельница следующим образом: глина после предварительного дробления поступает через течку в сепарационную шахту. Она подает кусками навстречу потоку горячих газов, двигающихся вверх по шахте. Горячие газы из топки засасываются в мельницу и подвергаются дроблению. Действием газового потока, а также благодаря большому числу оборотов ротора с билами глиняные частицы выбрасываются снова в сепарационную шахту, где мелкие частицы уносятся газами, а крупные возвращаются на домол.


Технические характеристики шахтной мельницы ММТ 1300/740

НаименованиеПоказательПроизводительность, т/ч25Расход электроэнергии на 1 т глины, кВт/ч2,5-3,5Расход тепла на испарение 1 кг влаги, ккал800-1000

Шаровая мельница или барабан ? устройство, принцип работы которого сводится к тому, что мелющие тела, заполняющие частично барабан, при вращении последнего уносятся трением о его стенки на некоторую высоту, затем, свободно падая, измельчают ударами и истиранием материал, подлежащий размолу (находящийся внутри барабана).

Для приготовления формовочных смесей сырьевые материалы разделяют на фракции, выделяя при этом построение включений. Наиболее распространен механический способ разделения материалов на фракции с помощью сит и грохотов. Выбор типа оборудования для просеивания зависит от характеристики материала, его физико-механических свойств, размеров и формы частиц, зернового состава, влажности, абразивности, липкости. Способности слеживаться, смерзаться, угла естественного откоса.

Для просеивания отощающих материалов и глины используют сито- бурат СМ-237М представляющее собой конический барабан, расположенный горизонтально, по образующей которого закреплены сита от мелкого к крупному, начиная от основания с меньшим диаметром. Материал за счет конусности вращающегося барабана продвигается к выходному концу и по пути рассеивается на число фракций, соответствующий числу сит. Не прошедшая через самое крупное сито фракция возвращается на помол или удаляется на отход.


Технические характеристики сита-бурат СМ-273М

НаименованиеПоказательПроизводительность, т/ч1,5Размер фракцийДо 1; 1-3; 3-5Диаметр барабана, ммБольшого1100Малого780Длина барабана, мм3500Частота вращения барабана, с-10,42Установленная мощность, кВт1,5Габаритные размеры, ммДлина4800Ширина1412Высота1495Масса, кг1185

Глинистые и отощающие материалы перемешиваются в пропеллерной мешалке СМ-489Б,с добавлением воды. Она представляет собой бассейн, обычно заглубленный в землю, с размешивающим устройством в виде пропеллера диаметром 200-500 мм и более. Диаметр пропеллера зависит от объема бассейна, который находится в пределах от 1 до 10 м3.


Технические характеристики пропеллерной мешалки СМ-489Б

НаименованиеПоказательВместимость резервуара, м38Частота вращения винта, с-12,67Диаметр окружности, описываемой винтом, мм900Глубина резервуара, мм2500Установленная мощность, кВт10Габаритные размеры, ммДлина2800Ширина915Высота3380Масса, кг1115

Далее полученный шликер проходит магнитную очистку в феррофильтрах и пропускается через вибрационное сито.

Феррофильтр состоит из корпуса, в котором установлен гребенчатый электромагнит. Масса подается в ворону, проходит через гребенки электромагнита и сливаются через лоток. Феррофильтр имеет специальный клапан, перекрывающий подачу керамической массы при включении электрического тока в катушке электромагнита, что исключает поступление железистых частиц из магнита и обратно в массу.

Вибрационное сито состоит из корпуса, на котором на пружинах установлено сито. Внизу укреплен вибратор, вверху с помощью пружинного натяжного устройства натянута сетка. Керамическая масса поступает на сетку и после очистки сливается через патрубок. Примеси удаляются с сетки через другой патрубок.

Часовая производительность сита- до 2 т керамической суспензии влажностью 45%.

Для сушки шликера применяют башенную распылительную сушилку СМК-148.

Она представляет собой металлический цилиндр, заканчивающийся внизу конусом, который служит для сбора готового продукта. В верхней ее части размещена шарнирно соединенная со шликеропроводом форсунка; в стенках устроены каналы для входа теплоносителя.



Технические характеристики распылительного сушила СМК-148

НаименованиеПоказательПроизводительность по сухому керамическому порошку, кг/ч4000Начальная влажность шликера, %42-45Давление шликера, Мпа2,5-3Расход природного газа, нм3/ч200-300Количество отработавших газов10 000-12 000Конечная влажность порошка, %7-8Температура в сушильной камере, ºС100-200Установленная мощность, кВт34,3Габаритные размеры, ммДлина15 215Ширина12 600Высота20 200Масса, кг125 000

Конвейерные линии для производства керамических плиток представляют собой комплекс различных механизмов и тепловых агрегатов, объединенных системой транспортных устройств, выполняющих все необходимые технологические операции: прессование плиток, их зачистку, перегруппировку, сушку, глазурование, зачистку после глазурования и обжиг.

Эти операции осуществляется в процессе транспортирования плиток по конвейеру. Конвейерные линии полностью механизированы.

Главная особенность всех линий? расположения плиток в один ряд по высоте и несколько рядов по ширине на роликовом (сетчатом) конвейере, что позволяет осуществить скоростные режимы сушки и обжига при равномерном по плоскости и равноинтенсивном двухстороннем обогреве каждой плитки.



Технические характеристики автоматизированной проточно-конвейерной линии СМК-132

НаименованиеПоказательПроизводительность, тыс. м2/год500Скорость конвейера, м/минВ сушилке и утильной печи1,6В политой печи1,7-1,9Расход природного газа, м3/ч94Установленная мощность, кВт62,7Габаритные размеры, ммДлина145 800Ширина6600Высота3000Масса, кг229 500

Таблица 1- Производительность предприятия

Производство, цехНаименование производимой продукцииМощность производства по основным видам продукции (кодовая)Сроки достиженияСуществующее положениеПроектируемая очередьПолное развитие1годПроизводство керамических плиток для полаКерамические плитки500тыс м2500тыс м2500тыс м2

1.2 Краткая характеристика физико-географических и климатических условий района и площадки строительства


Площадка предприятия расположена в Центральном районе г.Красноярска. Вокруг предприятия находятся строящиеся здания, хозяйственные корпуса и склады. С западной стороны пролегает железнодорожная дорога и населенный пункт Солонцы.

Рельеф местности района, на котором расположено предприятие, характеризуется наличием перепада высот более 50 м и холмистостью.

Город расположен в зоне повышенного потенциала загрязнения атмосферы, основными источниками загрязнения атмосферного воздуха являются выбросы от стационарных источников загрязнения, неорганизованные выбросы с производственных и строительных площадок, выбросы от автотранспортных средств.

Средняя температура июля +18,5 градусов, средняя температура января -15,6 градусов. Коэффициент А, зависящий от температурной стратификации атмосферы и определяющий условия горизонтального и вертикального рассеивания вредных веществ в атмосферном воздухе равен 200.

Среднегодовая повторяемость Северо-Северовосточного ветра - 2%, Северо - Восточного - 3%, Восточного - 7%, Юго-Восточного - 3%, Южного 4%, Юго-Западного - 44%, Западного - 26%, Северо-Западного - 26%. Господствующее направление - Юго-Западное.

Среднегодовая скорость ветра 2,3 м\с. В условиях Красноярска низкие скорости ветра сопровождаются образованием приземных инверсий в среднем в 38% случаев.

Повторяемость ветра с предприятия на жилые районы составляет 47%, это юго-Западный и Юго-Восточный ветра.


1.3 Характеристика района расположения предприятия по уровню загрязнения атмосферного воздуха


Для каждого конкретного предприятия природоохранные органы устанавливают ПДВ исходя из его расположения, наличия других источников загрязнения, расположения населенных пунктов, водных объектов и других особенностей района. Эти ПДВ должны обеспечивать соблюдение всех санитарных норм и ПДК в районе. При определение ПДВ проводятся расчеты концентраций загрязнителей согласно технологическим регламентациям, также используются результаты экспериментальных исследований. В Красноярске уровень загрязнения атмосферного воздуха очень высок, метеорологические особенности города способствуют накоплению вредных веществ в приземном слое атмосферы, наиболее большое количество выбросов веществ 1 и 2 классов опасности.

На предприятии по производству керамических плит ежемесячно производиться отбор проб воздуха и производиться количественный анализ оксидов азота, диоксида азота, оксида углерода, бенз(а)пирена. Отбор проб производиться на различных расстояниях от точечного источника выбросов.


1.4 Характеристика источников выбросов загрязняющих веществ в атмосферу


Источники выбросов могут быть организованные и не организованные.

К организованным относиться дымовая труба или вентиляционная шахта, в которую подаются дымовые газы при топлива.

К неорганизованным относится выброс вредных веществ при сгорании дизельного топлива в двигателях автомобилей, пыление при разгрузке, хранении, обработке и транспортировке.

В процессе производства на предприятии могут быть незапланированные выбросы, в результате неправильной работы оборудования и несовершенства технологии. Такие выбросы будут соответствовать залповым выбросам - однократным выбросам, которые превышают допустимые (разрешенные) выбросы на предприятии. Залповые выбросы характеризуются резким увеличением содержания в дымовых газах вредных веществ. При этом должна быть найдена и устранена причина выбросов.



Таблица

Производство, цехИсточники выделения ЗВИсточники выброса ЗВПараметры газовоздушной смеси на выходе из источника выбросаНаименованиеКоличествоНаименованиеКоличествоВысота Н,мДиаметр устья выходного сечения D, мСкорость W0, м/сОбъем V1 м3/сТемпература T, °СКерамический завод, печное отделениепечь1Вентиляционная шахта1100,250,250,98325

Производства строительных материалов представляют собой сложные технологические процессы, связанные с превращением сырья в разные состояния и с различными физико-механическими свойствами, а также с использованием разнообразной степени сложности технологического оборудования и вспомогательных механизмов. Во многих случаях эти процессы сопровождаются выделением больших количеств полидисперсной пыли, вредных газов и других загрязнений.

Подготовка пресс-порошка для полусухого прессования керамических изделий невозможна без значительного пылеобразования, поэтому пылегазоочистка и утилизация пыли являются актуальными задачами. Требуют очистки также и печные дымовые газы, содержащие вредные примеси. Эти задачи решаются применением циклона ШЛ-310.06 и скруббера ШЛ-315.



Таблица

Производство, цехГазоочистные установкиВыделения и выбросы загрязняющих веществНаименованиеВещества, по которым производится очисткаКоэффициент обеспеченности газоочисткой, %Средняя эксплуатационная степень очистки, %Максимальная степень очистки, %До мероприятийПродолжительность, ч/годПериодичность, раз/годПосле мероприятийг/смг/м3т/годКерамический завод, печное отделениеЦиклон ШЛ-310.06 Скруббер ШЛ-315Глина Шамот Кремний двуокись Доломит--99%---

Таблица

Производство, цехПродукцияМощность производстваВредные веществаОксид азотаДиоксид азотаОксид углеродаБенз(а)пиренВаловый выброс, т/годУдельный выброс на ед. продукцииВаловый выброс, т/годУдельный выброс на едю продукцииВаловый выброс, т/годУдельный выброс на едю продукцииВаловый выброс, т/годУдельный выброс на едю продукцииКерамикаКерамические плиты500 тыс м20,002980,130,002380,104230,80,2854,83 ? 10-61,09 ? 10-6


1.5 Обоснование данных о выбросах вредных веществ


Расчёт выбросов от автотранспорта.

Расчёт производиться по Методике проведения инвентаризации выбросов загрязняющих веществ в атмосферу для автотранспортных предприятий разработана по заказу Министерства транспорта Российской Федерации.

Расчет выбросов загрязняющих веществ выполняется для: оксида углерода- СО, оксидов азота - NОx, в пересчете на диоксид азота, бенз(а)пирена и для автомобилей с дизельными двигателями.

Выброс i-го вещества одной машины к-й группы в день при выезде с территории предприятия M'ik, и возврате M''ik рассчитывается по формулам:


M'ik = (mnik tn + mnpik · tпр + mgвik · tgв1 + mxxik · txxl) 10-6, т(1)

M''ik = (mgвik · tgв2 + mxxik · txxl2 10-6, т (2)


где mnik - удельный выброс i-го вещества пусковым двигателем, г/мин;

mnpik - удельный выброс i-го вещества при прогреве двигателя машины к-й группы, г/мин;

mgвik - удельный выброс i-го вещества при движении машины к-й группы по территории с условно постоянной скоростью. г/мин;

mxxik - удельный выброс i-го компонента при работе двигателя на холостом ходу. г/мин:

tn, tпр - время работы пускового двигателя и прогрева двигателя, мин;

tn, tпр - 1 ,2;

tgв1, tgв2 - время движения машины по территории при выезде и возврате, мин;

tgв1, tgв2 - 1,2;

tхx1, txx2 - время работы двигателя на холостом ходу при выезде и возврате = 1 мин.

При расчете выбросов от ДМ, имеющих двигатель с запуском от электростартерной установки, член mnik · tn из формулы (2.31) исключается

Так как по мере прогрева двигателя выбросы СО, СН и С уменьшаются, величина mnpik представляет собой оценку среднего удельного выброса за время прогрева tпр.

Значения mnik, mnpik, mgвik и mxxik приведены в таблицах 2.1 - 2.4. Приведенные в таблицах данные получены на основе статистической обработки результатов фактических измерений выбросов двигателей внутреннего сгорания и отражают категорию двигателя по мощности, а также учитывают температурные условия, характеризующие различные времена года.

Периоды года (холодный, теплый, переходный) условно определяются по величине среднемесячной температуры.

Месяцы, в которых среднемесячная температура ниже -5°С, относятся к холодному периоду, месяцы со среднемесячной температурой выше +5°С - к теплому периоду и с температурой от -5°С до +5°С - к переходному.

Для предприятий, находящихся в разных климатических зонах, продолжительность условных периодов будет разной.

Влияние периода года учитывается только для выезжающей техники, хранящейся при температуре окружающей среды.

Расчет выбросов для ДМ, хранящихся на закрытых отапливаемых стоянках, производится по показателям, характеризующим теплый период года, для всего расчетного периода.

Время пуска дизельного двигателя с помощью пусковых двигателей и установок tn также зависит or температуры окружающей среды и принимается по таблице 2.5.

Время, затрачиваемое ДМ при движении по территории предприятия tgв, определяется путем деления пути, проходимого машиной от центра площадки, выделенной для стоянки данной группы машин, до выездных ворот (при выезде) и от въездных ворот до центра стоянки (при возврате) на среднюю скорость движения по территории предприятия.

Средние скорости при въезде и выезде приведены в таблице


Таблица Удельные выбросы загрязняющих веществ ДМ КАМАЗ 53229-02 мощностью 240кВт.

Категория машинНоминальная мощность дизельного двигателя, кВтУдельные выбросы загрязняющих веществУдельные выбросы загрязняющих веществ, г/минСОСНNO2SO2С(зола)6161-260(mnik)57,04,74,50,095-6161-260(mnpik)6,31,242,00,260,176161-260(mgвik)3,371,146,471,13-6161-260(mxхiк)6,310,791,270,2500,17

M'ik = (mnik · tn + mnpik · tпр + mgвik · tgв1 + mxxik · txxl) 10-6, т


При расчете выбросов от ДМ, имеющих двигатель с запуском от электростартерной установки, член mnik · tn из формулы исключается для переходного периода.


Таблица Выброс i-го вещества одной машины к-й группы в день автомобиль КАМАЗ 53229-02 мощностью 240кВт для переходного периода.

№ ппНаименованиеУдельные выбросы загрязняющих веществ, г/минСОСНNO2SO2С1Выброс i-го вещества одной машины к-й группы в день при выезде с территории предприятия M'ik,22,954·10-64,53·10-67,152·10-62,236·10-60,51·10-6Выброс i-го вещества одной машины к-й группы в день при возврате M''ik10,354·10-62,158·10-69,034·10-61,746·10-60,17·10-6

M'ik = (mnik · tn + mnpik · tпр + mgвik · tgв1 + mxxik · txxl) 10-6, т

(СО)M'ik =(57·1+6,3·2+3,37·1,2+6,31)·10-6=22,954·10-6 т,

(СН)M'ik =(4,7·1+1,24·2+1,14·1,2+0,79)·10-6=4,53·10-6 т,

(NО2)M'ik =(4,5·1+2·2+6,47·1,2+1,27)·10-6=7,152·10-6 т,

(SО2)M'ik =(0,095·1+0,26·2+1,13·1,2+0,25)·10-6=2,236·10-6 т,

(С)M'ik =(0,17·2+0,17·1)·10-6=0,51·10-6т,

M''ik =(mвik · tgв2 + mxxik · txx2) 10-6т,

(СО)M''ik = (3,37·1,2+6,31)10-6=10,354·10-6 т,

(СН) M''ik =(1,14·1,2+0,79) 10-6=2,158·10-6т,

(NО2) M''ik =(6,47·1,2+1,27) 10-6=9,034*10-6т,

(SО2) M''ik =(1,13·1,2+0,25) 10-6=1,746·10-6т,

(С) M''ik =0,17·10-6т,


Выброс i-го вещества одной машины к-й группы в день автомобиль погрузчик ДЗ-24А мощностью 132кВт для переходного периода.


№ ппНаименованиеУдельные выбросы загрязняющих веществ, г/минСОСНNO2SO2С1Выброс i-го вещества одной машины к-й группы в день при выезде с территории предприятия M'ik,14,2184·10-64,638·10-613,034·10-61,02·10-60,3·10-62Выброс i-го вещества одной машины к-й группы в день при возврате M''ik6,418·10-63,55·10-65,592·10-60,7·10-60,10·10-6'ik = (mnik · tn + mnpik · tпр + mgвik · tgв1 + mxxik · txxl) 10-6, т


При расчете выбросов от ДМ, имеющих двигатель с запуском от электростартерной установки, член mnik · tn из формулы исключается для теплого периода.

(СО)M'ik =(3,9·2+2,09·1,2+3,91)·10-6=14,2184·10-6т,

(СН)M'ik =(0,49·2+2,55·1,2+0,49)·10-6=4,638·10-6т,

(NО2)M'ik =(0,78·2+4,01·1,2+0,78)·10-6=13,034·10-6т,

(SО2)M'ik =(0,16·2+0,45·1,2+0,16)·10-6=1,02·10-6т,

(С)M'ik =(0,35·1·0,10·1)·10-6=0,30·10-6т,

M''ik =(mвik · tgв2 + mxxik · txx2) 10-6т,

(СО)M''ik = (2,09·1,2+3,91)10-6=6,418·10-6т,

(СН) M''ik =(2,55·1,2+0,49) 10-6=3,55·10-6т,

(NО2) M''ik =(4,01·1,2+0,78) 10-6=5,592·10-6т,

(SО2) M''ik =(0,45·1,2+0,16) 10-6=0,7·10-6т,

(С) M''ik =0,10·10-6т,


Выброс i-го вещества одной машины к-й группы в день автомобиль КАМАЗ 53229-02 мощностью 240кВт для теплого периода.


№ ппНаименованиеУдельные выбросы загрязняющих веществ, г/минСОСНNO2SO2С1Выброс i-го вещества одной машины к-й группы в день при выезде с территории предприятия M'ik,16,654· 10-63,398· 10-611,034· 10-62,006· 10-60,34· 10-6Выброс i-го вещества одной машины к-й группы в день при возврате M''ik10,354· 10-62,158· 10-69,034· 10-61,746· 10-60,17· 10-6

M'ik = ( mnpik · tпр + mgвik · tgв1 + mxxik · txxl) 10-6, т


(СО)M'ik =(6,3·2+3,37·1,2+6,31)·10-6=16,654· 10-6 т,

(СН)M'ik =(1,24·2+1,14·1,2+0,79)·10-6=3,398· 10-6т,

(NО2)M'ik =(2·2+6,47·1,2+1,27)·10-6=11,034· 10-6т,

(SО2)M'ik =(0,26·2+1,13·1,2+0,25)·10-6=2,006· 10-6т,

(С)M'ik =(0,17·2)·10-6=0,34· 10-6т

M''ik =(mвik · tgв2 + mxxik · txx2) 10-6т,

(СО)M''ik = (3,37·1,2+6,31)10-6=10,354·10-6 т,

(СН) M''ik =(1,14·1,2+0,79) 10-6=2,158·10-6т,

(NО2) M''ik =(6,47·1,2+1,27) 10-6=9,034*10-6т,

(SО2) M''ik =(1,13·1,2+0,25) 10-6=1,746·10-6т,

(С) M''ik =0,17·10-6т,


Выброс i-го вещества одной машины к-й группы в день автомобиль погрузчик ДЗ-24А мощностью 132кВт для теплого периода.


№ ппНаименованиеУдельные выбросы загрязняющих веществ, г/минСОСНNO2SO2С1Выброс i-го вещества одной машины к-й группы в день при выезде с территории предприятия M'ik,9,318·10-64,04·10-66,372·10-60,86·10-60,2·10-62Выброс i-го вещества одной машины к-й группы в день при возврате M''ik6,418·10-63,55·10-65.592·10-60,7·10-60,1·10-6

M'ik = (mnik · tn + mnpik · tпр + mgвik · tgв1 + mxxik · txxl) 10-6, т


(СО)M'ik =(3,9·2+2,09·1,2+3,91)·10-6=9,318·10-6т,

(СН)M'ik =(0,49·2+2,55·1,2+0,49)·10-6=4,04·10-6т,

(NО2)M'ik =(0,78·2+4,01·1,2+0,78)·10-6=6,372·10-6т,

(SО2)M'ik =(0,16·2+0,45·1,2+0,16)·10-6=0,86·10-6т,

M''ik =(mвik · tgв2 + mxxik · txx2) 10-6т,

(СО)M''ik = (2,09·1,2+3,91)10-6=6,418·10-6т,

(СН) M''ik =(2,55·1,2+0,49) 10-6=3,55·10-6т,

(NО2) M''ik =(4,01·1,2+0,78) 10-6=5,592·10-6т,

(SО2) M''ik =(0,45·1,2+0,16) 10-6=0,7·10-6т,

(С) M''ik =0,1·10-6т,


Валовый годовой выброс i-го вещества ДМ рассчитывается для каждого периода года по формуле:

Валовый годовой выброс i-го вещества ДМ переходный период.

т/год ;


М1=(70,5924 х10-6+39,822 х10-6) х793 х 10-6 = 110,4144 х 10-6 х1898 х 10-6 =0,209х10-6 т/год

Валовый годовой выброс i-го вещества ДМ теплый период.


т/год;


М1=(70,5924 х10-6+39,822 х10-6) х1196 х 10-6 = 110,4144 х 10-6 х1196 х 10-6 =0,209х10-6 т/год;

где Dфк - суммарное количество дней работы ДМ к-й группы в расчетный период года ;

фк = Dp · Nk,=61 х13 =793 дн переходный периодфк = Dp · Nk,=92 х13 =1196 дн теплый период


где Dp - количество рабочих дней в расчетном периоде;- среднее количество ДМ к-й группы, ежедневно выходящих на линию.


г/мин г/мин


Количество рабочих дней в расчетном периоде (Dp) зависит от режима работы предприятий и длительности периодов со средней температурой ниже -5°С, от -5°С до 5°С, выше 5°С. Длительность расчетных периодов для каждого региона и среднемесячная температура принимается по Справочнику по климату

Для определения общего валового выброса M°i валовые выбросы одноименных веществ по периодам года суммируются:

°i = Mтi + Mтi + Mтi, т/год


КАМАЗ 53229-02 ДЗ-24А

(СО) M°i = 60,316 т/год (СО) M°i = 36,372 т/год

(СН) M°i = 12,244 т/год (СН) M°i = 15,778 т/год

(NО2) M°i = 36,254 т/год (NО2) M°i = 30,59 т/год

(SО2) M°i = 7,734 т/год (SО2) M°i = 3,28 т/год

(С) M°i = 1,16 т/год (С) M°i = 0,7 т/год

Максимально разовый выброс i-го вещества Gi рассчитывается для каждого месяца по формуле:



где txx - время работы двигателя на холостом ходу при выезде и возврате (в среднем составляет 1 мин.); N'k - наибольшее количество ДМ, выезжающих со стоянки в течение одного часа. Величина tпp практически одинакова для различных категорий машин, но существенно изменяется в зависимости от температуры воздуха (таблица 2.7).

Общие валовые и максимально разовые выбросы от передвижных источников определяются суммированием выбросов одноименных загрязняющих веществ от всех групп автомобилей и дорожно-строительных машин.

=(57·1+6,3·2+3,37·1,2+6,31) ·13/3600=0,082 т;=(4,7·1+1,24·2+1,14·1,2+0,79) ·13/3600=0,016 т;=(4,5·1+2·2+6,47·1,2+1,27) ·13/3600=0,025 т;=(0,095·1+0,26·2+1,13·1,2+0,25) ·13/3600=0,08 т;=(0,17·2+0,17·1) ·13/3600=0,0018 т.

Валовый и максимально разовый выброс оксида углерода

Валовый выброс оксида углерода (СO):


МCO=СCO×m×(1-)×10-3, т/год

МСO=8,95×25920(1-=230,8 т/год


где, q1 - потери теплоты вследствие механической неполноты сгорания, %; q1=0,5

m - количество израсходованного топлива, т/год;

CCO - выход окиси углерода при сжигании топлива кг/ч;


CCO=qR××Qi

CCO=0,5×0,5×35,8=8,95


где q2- потери теплоты вследствие химической неполноты сгорания топлива, %; q2= 0,5

R - коэффициент учитывающий долю потери теплоты вследствие химической неполноты сгорания топлива; R=0,5 - для газа;

Qi - низшая теплота сгорания натурального топлива.

Максимально разовый выброс оксида углерода определяется:


GCO= , г/с

GCO==0,285, г/с


m- расход топлива за самый холодный месяц, т;


Валовый выброс оксидов азота определяется (NO):

M=mi×Q×KNO(1-?)×10-3×(1-?)×10-3, т/год

M=25920=0,00298 т/год


где, KNO- параметр характеризующий количество окислов азота, образующихся на 1 ГДж тепла, кг/ГДж; KNO2=0,115

?- коэффициент зависящий от степени снижения выбросов окислов азота в результате применения технических решений. Для котлов производительностью до 30 т/ч, ?=0;

Максимальный разовый выброс определяется по формуле:


GNO=, г/с

GNO==0,13, г/с


n - количество дней в расчетном месяце.

Валовый выброс диоксида азота (NO2):


МNO2=0,8×МNO=0,8×0,00298=0,00238 т/год

GNO2=0,8×GNO=0,8×0,13=0,104 г/с


Валовый выброс бензапирена

Валовый выброс бенз(а)пирена, т/год, определяется по формуле:


Мбп = Сбп ? Vв ? Т ? 10-12


Концентрация бензапирена мг/нм3 в сухих продуктах сгорания природного газа промтеплоэнергетических котлов малой мощности определяется по формуле:


Сб(а)п=КДКрКст=0,17×10-3

КД=1,0

Кр=1,35

Кст=1,35

Т - время работы асфальтосмесительной установки, ч/год; Т = 1224 ч/год;

Vв - объем дымовых газов, м3/ч, вычисляется по формуле:


Vв = (273 + tух)·Vг/273,


где: tух - температура уходящих газов,°С;г - объем продуктов сгорания топлива, м3/ч, находится по формуле:

г = 7,8 · ? · В · Э


где ? - коэффициент избытка воздуха ?=1,15 ;

В - расход топлива, кг/ч;

Э - эмпирический коэффициент для природного газа; Э = 1,11;


Mбп = 0,5 ? 7900,59 ? 1224 ? 10-12 = 4,83 ? 10-6 т/год.


Максимально-разовый выброс бенз(а)пирена, соответственно, равен:

бп = 4,83 ? 10-6? 106 / 3600 ? 1224 = 1,09 ? 10-6 г/с.


1.6 Комплекс мероприятий по уменьшению выбросов в атмосферу


Планировочные мероприятия включают в себя: проектировку расположения предприятия относительно жилых массивов с учетом розы ветров, строительство ограждений предприятия от жилой зоны.

Технологические: сотрудничество с другими предприятиями, которые могут использовать отходы данного производства, использования усовершенствованных технологий очистки и производства, замена топлива на более чистое, повторное использование дымовых газов, изменение технологии.

При производстве керамики энергия в первую очередь расходуется на обжиг, во многих случаях полуфабрикатов или отформованных заготовок также оказывается энергоемкой.

Снижение энергопотребления (энергоэффективность).

Выбор источника энергии, режима обжига и способа использования остаточного тепла являются ключевыми при проектировании печей и одним из наиболее важных факторов, оказывающих воздействие на энергоэффективность и экологическую результативность производственного процесса.

Ниже приведены основные рассматриваемые в данном документе методы снижения энергопотребления, которые можно применять как вместе, так и по отдельности

·Модернизация печей и сушилок

·Использование остаточного тепла печи

·Совместное производство тепла и энергии

·Замена твердого топлива и тяжелого мазута на топливо с низким уровнем выбросов

·Оптимизация формы заготовок



Таблица

Источник выбросаПроизводствоЦех, оборудованиеГОУВещества, по которым производится газоочисткаКоэффициент обеспеченности газоочисткой, %Проектная степень очисткиВыделения вредных веществ без очисткиВыбросы вредных веществ с учетом газоочисткиЭтапность внедренияПечьКерамический заводПечное отделениеCO NO NO2 Б(а)п- - - -- - - -0,28 0,13 0,104 1,09?10-6- - - -

Шлам:

Повторное использование шлама путем установки систем его оборота или применения его для других изделий.

Твердые отходы производства/технологические потери:

·возврат не подвергнутого смешанного сырья

·возврат в технологический процесс боя изделий

·использование твердых отходов в других отраслях промышленности

·автоматизированный контроль процесса обжига

·оптимизация садки


1.7 Характеристика мероприятий по регулированию выбросов в периоды особо неблагоприятных метеорологических условий


Опасные метеоусловия, это например образование, над источником приподнятой инверсии, нижняя граница которой находится на высоте непосредственно, на высоте устья вытяжного вентилятора, приземные концентрации вредных веществ могут превысить максимальные в 1,5-2 раза. При отсутствии ветра у земли, концентрации вредных веществ могут почти в 2 раза превысить максимальные концентрации. При одновременном несовпадении этих крайне неблагоприятных условий в районе источников выбросов значения концентраций вредных веществ могут увеличиться в 3-6 раз.

Для предотвращения загрязнения атмосферы, ГГО им. Воейкова установлены правила, по которым должны работать предприятия в период неблагоприятных метеоусловий.

В правилах предусмотрено составление прогнозов возможности неблагоприятных условий, которые необходимы для осуществления усиленного контроля за технологическим процессом. Перед наступлением опасных метеоусловий предприятия должны сократить выбросы и повысить степень очистки газов. Если есть опасение, что концентрация будет превышать чрезмерно опасную, то принимаются все возможные меры по снижению выбросов, вплоть до временной остановки предприятия.

После получения предупреждения о неблагоприятных метеоусловиях усиливается контроль за технологией производства, ограничиваются работы, которые сопровождаются пылением, работа роторной печи переводиться в режим низкой производительности, оптимизируется (или прекращается) работа транспорта.


1.8 Расчет и анализ приземных концентраций загрязняющих веществ


Таблица

Загрязняющее веществоКласс опасностиПДК в воздухе населенных местКонцентрация в долях ПДКНа границе СЗЗВ населенном пунктеNO азота оксид30,4001,20,8NO2 азота диоксид20,0851,20,8CO углерода оксид45,0001,190,75Бенз(а)пирен10,0000011,260,98?10-5

Для анализа приземных концентраций от точечного источника выбросов производится расчет рассеивания загрязняющих веществ по «Методики расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий. ОНД - 86». Расчёт производиться для точечного источника - дымовой трубы с круглым устьем.

Максимальная приземная концентрация вредных веществ Сmax (мг/м3) при неблагоприятных метеорологических условиях на расстоянии хм (м) от источника должна определяться по формуле:


Сmax =


где А - коэффициент, зависящий от температурной стратификации атмосферы;

М - масса вредного вещества, выбрасываемого в атмосферу в единицу времени, г/с;- безразмерный коэффициент, учитывающий скорость оседания вредных веществ в атмосферном воздухе;

т и п - коэффициенты. учитывающие условия выхода газо-воздушной смеси из устья источника выброса;

Н - высота источника выброса над уровнем земли, м;

? - безразмерный коэффициент, учитывающий влияние рельефа местности, в случае ровной или слабопересеченной местности с перепадом высот, не превышающим 50 м на 1 км, ?=1;

?Т - разность между температурой выбрасываемой газо-воздушной смеси Тг и температурой окружающего атмосферного воздуха Тв, °С;

V1 - расход газо-воздушной смеси, м3/с, определяемый по формуле:



где D - диаметр устья источника выброса, м;

?0 - средняя скорость выхода газовоздушной смеси из устья источника выброса.


?Т = Тг - Тв,


?Т=350-25=325С

Значение безразмерного коэффициента F принимается равным 1 для газообразных веществ, и 2,5 для мелкодисперсных аэрозолях при очистке не менее 75%.


f=1000*(w02*D)/(H2* ?Т)


f=1000·12,82 ? 0,8/142 ? 64,5 = 10,36

?м =0,65 3?V1 ?Т/Н = 0,65 3?6,4?64,5/14=2,1

?м = 1,3· ?0 D/ Н = 1,3 · 12,8 ·0,8/14=0,5е = 800 (?м)3 = 800(0,95) 3=100

Безразмерный коэффициент m определяется в зависимости от параметра f по формуле:


при f<100

m = 1/0.67+0.1?10,36+0,34³?10,36=0,74


Параметр n по формуле:

= 1 при ?m ?2


Опасная скорость ветра um (м/с) на уровне флюгера (обычно 10м от уровня земли), при которой достигается наибольшее значение , в случае f<100 определяется по формуле 2.16 в:m = ?m(1+0,12?f) при ?m ?2 ; um = 2,007(1+0,12?10,36)=2,5

Параметр d (по формуле (2.15б))


d = 7? ?м(1+0,833? fе) при ?м ?2 ; d = 7? 2,007(1+0,833? 680)=23,1


Максимальная концентрация вредных веществ определяется (по формуле (2.1))


(CO) =0,06 мг/м3

(NO2) =0,023 мг/м3

(NO)=0,028 мг/м3

Б(а)п =0,24×10-6 мг/м3


Максимальное значение приземной концентрации вредного вещества


Сми=rСм, мг/м3


Сми= 0,3×0,06=0,018 мг/м3

Сми= 0,3×0,028=0,008 мг/м3

Сми= 0,3×0,023=0,0069 мг/м3

Сми= 0,3×0,24×10-6=0,72×10-7 мг/м3


r=0,67(u/uм)+1,67(u/uм)2-1,34(u/uм)3


при u/uм ? 1 r=0,67(1,64)+1,67(1,64)2-1,34(1,64)3=0.3

Расстояние хм от источника выбросов, на котором приземная концентрация с (мг/м3) при неблагоприятных метеорологических условиях достигает максимального значения см, определяется по формуле (2.13)


хм = (5 - F/4) ?d ? H = 231 м


Коэффициент s1 - безразмерный коэффициент, определяется в зависимости от отношения х/хм для расстояния х (м )(по формуле (2.23а), (2.23б))

х=150м, х/хм=150/231=0,65

х=200м, х/хм=200/231=0,87

х=250м, х/хм=250/231=1,08

х=300м, х/хм=300/231=1,30

х=350м, х/хм=350/231=1,5

s1 = 3(х/хм)4 - 8(х/хм)3 +6 (х/хм)2 при х/хм ? 1

s1 = 1,13/ 0,13(х/хм) 2 +1 при 1< х/хм ? 8

s1(150м) =3(0,65)4 - 8(0,65)3 +6 (0,65)2=0,875(200м) =3(0,87)4 - 8(0,87)3 +6 (0,87)2=0,96(250м) =1,13/ 0,13(1,08) 2 +1=0,98(300м) =1,13/ 0,13(1,3) 2 +1=0,93(350м) =1,13/ 0,13(1,5) 2 +1=0,87

Концентрация вредных веществ на различных расстояния х(м) от источника выброса в атмосферу по оси факела выброса при опасной скорости ветра uм (по формуле (2.13))


С=S1? Cсум


х=150м,

(CO) С=0,875×4,56=3,99 мг/м3

(NO2) С=0,875×0,203=0,18 мг/м3

(NO) С=0,875×0,388=0,34 мг/м3

Б(а)п С=0,875×1,14×10-6=9,975×10-7 мг/м3

х=200м,

(CO) С=0,96· 4,56=4,38 мг/м3

(NO2) С=0,96·0,203=0,019 мг/м3

(NO) С=0,96·0,388=0,37 мг/м3

Б(а)п С=0,96?1,14×10-6=1,09×10-6 мг/м3

х=250м,

(CO) С=0,98· 4,56=4,47 мг/м3

(NO2) С=0,98·0,203=1,199 мг/м3

(NO) С=0,98·0,388=0,380 мг/м3

Б(а)п С=0,98?1,14×10-6=1,12×10-6 мг/м3

х=300м,

(CO) С=0,93· 4,56=4,24 мг/м3

(NO2) С=0,93·0,203=0,189 мг/м3

(NO) С=0,93·0,388=0,36 мг/м3

Б(а)п С=0,93?1,14×10-6=1,06×10-6 мг/м3

х=350м,

(CO) С=0,87· 4,56=3,97 мг/м3

(NO2) С=0,87·0,203=0,177 мг/м3

(NO) С=0,87·0,388=0,337 мг/м3

Б(а)п С=0,87?1,14×10-6=0,992×10-6 мг/м3

Фоновая концентрация рассчитывается по формуле;


С ф = ;мг/м3

(CO) С ф = =4,5 мг/м3;

(NO2) С ф = =0,18 мг/м3

(NO) С ф = =0,36 мг/м3

(Б(а)П)…… С ф = =9×10-7 мг/м3


Суммарная концентрация вредных веществ (мг/м3) находится по формуле:


Ссум = Сmax+Сф.


(CO) Ссум = 0,4+ 4,5 =4,9;

(NO2) Ссум = 0,08+ 0,0765 =0,156;

(NO) Ссум = 0,12+ 0,36=0,48;

Б(а)п Ссум = 1,14×10-6


Концентрации загрязняющих веществ С - доли ПДК, рассчитывается по формуле



х=150м,

(CO) Доли ПДК= =1,698

(NO2) Доли ПДК= =1,8;

(NO) Доли ПДК= = 1,75;

Б(а)п Доли ПДК==1,89

х=200м,

(CO) Доли ПДК= =1,776;

(NO2) Доли ПДК= =1,85;

(NO) Доли ПДК= = 1,825;

Б(а)п Доли ПДК==1,99

х=250м

(CO) Доли ПДК= =1,794;

(NO2) Доли ПДК= =1,895;

(NO) Доли ПДК= = 1,85;

Б(а)п Доли ПДК==2,02

х=300м,

(CO) Доли ПДК= =1,748;

(NO2) Доли ПДК= =1,845;

(NO) Доли ПДК= = 1,8;

Б(а)п Доли ПДК==1,96

х=350м;

(CO) Доли ПДК= =1,694;

(NO2) Доли ПДК= =1,785;

(NO) Доли ПДК= = 1,74;

Б(а)п Доли ПДК==1,89


1.9 Предложения по установлению ПДВ и ВСВ


Объект относится ко второй группе сложности, т.е величины выбросов для некоторых загрязняющих веществ не удовлетворяют фоновому критерию.



Таблица 7

Источник выбросаПроизводство и источник выделенияЗагрязняющее веществоПредложения по нормативам выбросовПДВВСВг\ст\годг\ст\годВентиляционная шахтаКерамические плитки Печь обжигаNO--0,130,00298NO2--0,1040,00238CO--0,285230,8Бенз(а)пирен--1,910-54,8310-6

Так как выбросы от данного предприятия превышают ПДК, то для них невозможно установление ПДВ. Необходимо принятие мер по снижению количества выбросов и снижения ПДК.


1.10 Методы и средства контроля за состоянием воздушного бассейна


Хроматография проводиться с помощью газового хроматографа, им определяют органические примеси в воде и атмосфере. С помощью газоанализатора получают информацию о наиболее часто встречающихся вредных примесях. Фотоколориметром определяется отношение количества частиц вещества в объёме газа. Результаты, полученные с помощью этого оборудования обрабатываются в лаборатории, при необходимости немедленного получения результатов используют экспресс-методы (такие как газоанализ).

Постоянный контроль проводиться для следующих веществ: бенз(а)пирен, оксида азота,диоксида азота и оксиды серы.

Перечень источников, подлежащих регулярному контролю за соблюдением величины ПДВ (ВСВ).



Таблица

Источник выбросаЗагрязняющее веществПредложения по нормируемым параметрамЭпизодичность контроляКоличество замеров в годМесто контроляСредства контроляПДВВСВг\ст\гг\ст\гВентиляционная шахтаNO1 раз в месяц, на высоте 1,5 м.12на нескольких расстояниях от источника выделенияХроматограф, фотоколориметр, весы, газоанализатор.NO2COБ (а)п

1.11 Обоснование принятого размера санитарно-защитной зоны


В целях обеспечения безопасности населения и в соответствии с Федеральным законом О санитарно-эпидемиологическом благополучии населения от 30.03.1999 № 52-ФЗ, вокруг объектов и производств, являющихся источниками воздействия на среду обитания и здоровье человека устанавливается специальная территория с особым режимом использования (далее - СЗЗ (СЗЗ), размер которой обеспечивает уменьшение воздействия загрязнения на атмосферный воздух (химического, биологического, физического) до значений, установленных гигиеническими нормативами, а для предприятий I и II класса опасности - как до значений, установленных гигиеническими нормативами, так и до величин приемлемого риска для здоровья населения.

По своему функциональному назначению СЗЗ является защитным барьером, обеспечивающим уровень безопасности населения при эксплуатации объекта в штатном режиме.

Критерий определения размера СЗЗ - непревышение на ее внешней границе и за ее пределами ПДК (предельно допустимых концентраций) загрязняющих веществ для атмосферного воздуха населенных мест, ПДУ (предельно допустимых уровней) физического воздействия на атмосферный воздух.

Размер СЗЗ для групп промышленных объектов и производств или промышленного узла (комплекса)устанавливается с учетом суммарных выбросов и физического воздействия источников промышленных объектов и производств, входящих в промышленную зону, промышленный узел (комплекс). Для них устанавливается единая расчетная СЗЗ, и после подтверждения расчетных параметров данными натурных исследований и измерений, оценки риска для здоровья населения окончательно устанавливается размер санитарно-защитной зоны. Для промышленных объектов и производств, входящих в состав промышленных зон, промышленный узлов (комплексов) СЗЗ может быть установлена индивидуально для каждого объекта.

По санитарной классификации предприятий и производств [СанПиН 2.2.1/2.1.1.1200-03] керамический завод относится к 4 классу опасности с санитарно-защитной зоной не менее 100м.


1.12 Мероприятия по защите от теплового воздействия, шума и вибрации


При производстве цемента используется дробильное оборудование, работа которого сопровождается высоким уровнем шума. При планировании размещения предприятия и организации промпространства необходимо обеспечить максимальное удаление источников шума от жилых районов, обеспечить обнесение производства звукозащитными экранами, использование звукопоглощающих материалов, снижение уровня шума за счет звукопоглощающих кожухов.

Снижение уровня с применением комплекса мер:

·герметизация оборудования

·виброуплотнение оборудования

·использование звукоизоляции и низкооборотных вентиляторов

·размещение окон, дверей и шумных участков вдали от соседей

·звукоизоляция окон и стен

·уплотнение окон и дверей

·проведение шумных работ только в дневное время надлежащее техническое обслуживание

Выводы по разделу «Охрана атмосферного воздуха от загрязнений»:

Основным источником загрязнения является вентиляционная шахта, через которую выходят дымовые газы при сжигании топлива в роторной печи. Выброс в атмосферу происходит постоянно, не зависит от сезона.

В соответствии с СанПиН керамический завод относиться к 4 классу опасности, и должен иметь санитарно-защитную зону 100м, но так как концентрация на границе санитарно-защитной зоны существенно выше принятой, то необходимо снижение количества выбросов вредных веществ или расширение границ санитарно-защитной зоны.

На производстве присутствуют посты мониторинга как на территории завода, так и на разных расстояниях от него.

рекультивация подземный вода почва


2. Охрана поверхностных и подземных вод от загрязнения и истощения


Возможными источниками загрязнения поверхностных и подземных вод являются:

·неочищенные или недостаточно очищенные производственные и бытовые сточные воды

·поверхностные сточные воды

·фильтрационные утечки вредных веществ из емкостей, трубопроводов и других сооружений;

·промплощадки предприятий, места хранения и транспортирования продукции отходов производства;

·свалки коммунальных и бытовых отходов.


2.1 Характеристика современного состояния водного объекта


Вода расходуется в основном при роспуске глинистых материалов в процессе производства или промывке оборудования, сбросы в воду также имеют место при работе скрубберов мокрой очистки газов. Вода добавляемая непосредственно в сырьевую смесь, испаряется при сушке и обжиге. Вода на предприятие поступает из городской системы водоснабжения, приемником сточных вод является городская канализационная система. Городская система водоснабжения питается от реки Енисей протекающей с юга на север Красноярска, средний годовой расход воды 18,6 тыс. м/с, длина 3490 км. Площадь Бассейн реки 2580 тыс. км2, общая ширина русла достигает 2-3 км. Питание реки смешанное. В зимний период Енисей ниже плотины не замерзает почти на200 км.


Таблица

Участок реки, створГодРасход воды, м3\годЗагрязняющее веществоСтепень загрязненности (превышение ПДК), мл\лИсточник загрязненияУчасток, относящийся к центральной части города20112,5 млннефтепродукты0,08Промышленность, бытовое пользование.хлориды0,9ПАВ0,06сероводород0,7Аммиак0,05фенолы0,045хлор0,41

2.2 Мероприятия по охране и рациональному использованию водных ресурсов


Рациональное использование водных ресурсов заключается в наиболее экономичном потреблении воды и наиболее качественной очистке сточных вод. Рациональное использование направлено на сохранение качества воды, поэтому меры по охране вод входят в природоохранную программу.


2.3 Водопотребление и водоотведение предприятия


Оценка качества воды производиться по химическим, физическим и биологическим показателям.


Таблица - требования к качеству воды

Показатель качества водывода свежаявода оборотнаяСбросТемператураЗапах2 балла5 балловЦветность20-3570Жесткость общая7,01,5-3Хлориды350700Цинк5,01,5-4Железо0,30,5-1Медь1,05-7Остаточный хлор0,3-0,5Кишечная палочкаНе более 1010000Число микроорганизмов 1 см3Не более 100

Предприятие подключено к городской системе водоснабжения. Водоснабжение города включает три стадии производственного цикла:

. Добыча воды из природного источника.

. Хлорирование в соответствии с существующими стандартами

. Подача воды в сети водопровода для потребителей.

Средняя общая потребность предприятия в свежей воде составляет 1000 литров.


2.4 Количество и характеристика сточных вод


Сточные воды на производстве носят хозяйственно-бытовой характер, после использования вода сбрасывается в городскую канализацию.


Таблица - Качественные и количественные состава и свойств сточных вод анализируемого объекта

ПроизводствоРасход водыT, °СЗагрязняющее в-воКонцентр.Кол-воРежим отведенияМесто отведенияМ3\сутМ3\часКерамический завод73800307510Песок, глина шамот, каолин--Сооружения оборотного циклаГородская канализацияБытовые нужды49,742,0720Пав, аммиак, хлорОчистные сооруженияГородская канализация


2.5 Обоснование проектных решений по очистке сточных вод


Система городской канализации рассчитана на сброс вод хозяйственно-бытового характера. Сточные воды данного предприятия носят хозяйственно-бытовой характер, поэтому дополнительной очистки не требуется. Но должны учитываться следующие требования:

при сбросе возвратных (сточных) вод конкретным водопользователем, производстве работ на водном объекте и в прибрежной зоне содержание взвешенных веществ в контрольном створе (пункте) не должно увеличиваться по сравнению с естественными условиями более, чем на 0,25 мг/дм3

окраска не должна обнаруживаться в столбике 20см;

вода не должна приобретать запахи интенсивностью не более 1 балла, обнаруживаемые непосредственно или при последующем хлорировании или других способах обработки;

летняя температура воды в результате сброса сточных вод не должна превышаться более чем на 3 °С по сравнению со среднемесячной температурой воды самого жаркого месяца года последние 10 лет;

водородный показатель не должен превышать 6,5-8,5.


2.6.Баланс водопотребления и водоотведения предприятия


Таблица

ПроизводствоВодопотребление, м3\суткиВсегоНа производственные нуждыНа хозяйственно-бытовые нуждыСвежая водаОборотнаяПовторно используемаяВсегоВ том числе питьевого качестваКерамический завод738497384973849487084870849,74Таблица

ПроизводствоВодоотведение, м3\суткиВсегоПовторно используемаяПроизводственные сточные водыХозяйственно-бытовые сточные водыБезвозвратное потреблениеКерамический завод25082487082503249,7459,04

Таблица

ПроизводствоПрод.Удельное водопотребление, м3\едУдельное потребление свежей воды, м3\едУдельное водоотведение, м3\едБезвозвратное потребление и потери воды, м3\едКерамический заводКерамические плитки3075207104559,04

2.7 Показатели использования водных ресурсов в проектируемом производстве


1. Коэффициент использование оборотной воды Коб=48708/196308*100=24,8

. Коэффициент безвозвратного потребления и потерь свежей воды Кпот=122518/270108*100=45,4

. Коэффициент использования воды Кисп.воды=122518/270108*100%=45,4

. Коэффициент водоотведения Котв=25082/147600*100=16,9

. Коэффициент использования воды на проектируемом предприятии Кисп.проект=245026/270108*100=90,7


2.8 Контроль водопотребления и водоотведения


Вода поступает на производство из городской системы водоснабжения, т.е относиться к питьевому классу.

Контроль за качеством воды ведется Центром контроля качества воды, центр имеет аккредитацию Госстандарта России. Пробы воды для анализа отбираются ежедневно в разных районах города на насосных станциях, из колонок и водопроводных кранов. На водозаборе каждые 2 часа проводиться анализ воды на содержание остаточного хлора.



3. Восстановление земельного участка, использование плодородного слоя почвы, охрана недр и животного мира


.1 Рекультивация нарушенных земель, использование плодородного слоя почвы


При строительстве керамического завода происходит нарушение целостности земельного покрова, что приводит к изменению экологической системы и формированию антропогенного ландшафта.

При функционировании предприятия в почву попадает большое количество производственной пыли, часть сырьевых материалов так же попадает в почву при транспортировке и пересыпке. Таким образом нарушается баланс минеральных веществ, что ведет к угнетению плодородной функции.

Восстановление нарушенных земель - сложная комплексная задача. Процесс рекультивирования делится на два этапа:

1.первый - это техническая рекультивация. На этом этапе выравнивают поверхность, закапывают рвы, рытвины, осуществляют химическую мелиорацию грунта, оставшегося на месте разработок, насыпают плодородный слой почвы.

2.второй - биологическая рекультивация. На втором этапе восстанавливают плодородие почвы.

В процессе технической рекультивации необходимо провести выравнивание поверхности, химическое восстановление почвы и внести плодородный слой. При проведении строительных работ плодородный слой снимается и передается в сельскохозяйственное пользование. Снятие почвы проводиться с помощью бульдозера на глубину 8-20см. Не допускается укладка пересушенной почвы в валы. Вывод снятого слоя с территории предприятия осуществляется с помощью автосамосвалов.

Таблица

ПоказательОбъемПлощадь отчуждаемых земель, га2,5Площадь рекультивируемых земель, гаВ том числе:СельскохозяйственныхЛесохозяйственныхВодохозяйственныхСреднегодовая площадь рекультивируемых земель, гаПлощадь снятия плодородного слоя почвы, га Мощность снимаемого плодородного слоя почвы, гаМощность снимаемого потенциального плодородного слоя почвы, гаМощность рекультивируемого слоя почвы, мВ том числе: плодородного слояПотенциально плодородного слояМощность экранируемого слоя, мОбъем земляных работ, м3:Снятие плодородного слояСнятие потенциально плодородного слояСнятие пород для экранирующего слоя

3.2 Мероприятия по охране почв от отходов производства


Отходы производства: отходы при производстве керамики в основном представляют собой следующее:


Таблица

Цех, пр-воНаимен отхода, код ФККОКол-воФиз. состКласс опасностиПериод накоплспособ храненияспособ утилиз.т\сутт\годБытовыеОтходы органического происхождения 1900000000000Не хранятсяСброс в систему канализацииУпаковкаОтходы упаковочной бумаги незагряненные 18710201 01 00 5тв5КонтейнерыВывоз на полигоныОтходы упаковочного картона незагрязненные 18710202 01 00 5тв5Керамический заводПыль керамическая 31400701 11 00 4сып4КонтейнерыВывоз на полигоныОтходы керамики в кусковой форме 31400702 01 99 5тв5Вывоз на полигоныКерамические изделия, потерявшие потребительские свойства 31400703 01 99 5тв5КонтейнерыВывоз на полигоны

3.3 Охрана недр


Данное предприятие по производству керамической плитки не использует самостоятельную выработку сырья, так как находиться в черте города, все необходимые компоненты для производственного процесса приводятся из разработанных ранее карьеров, такие образом предприятие не влияет на истощение минеральных запасов территории на которой располагается. Сырьевые материалы не являются редкими минеральными образованиями, и используются в относительно малых количествах. При хранении сырья на предприятии используется раздельное складирование и хранение.



3.4 Охрана животного мира


Для обеспечения охраны растительного и животного мира проводиться постоянный мониторинг состояния окружающей среды, микробиологический анализ воды и почв позволяет предотвратить нарушение в биологических системах на начальных стадиях. Для сохранения естественной среды обитания живых организмов необходимо обеспечить предотвращение аварийных ситуаций и нарушений технологии производства.



Заключение


В данной курсовой работе мы проводили оценку воздействия на окружающую среду керамического завода по производству керамической плитки. И пришли к выводу, что это предприятие, создает угрозу загрязнения окружающей среды .

Сточные воды керамический завод сбрасывает в городскую канализацию. Вода на предприятии расходуется на технологический процесс- для добавления в шликер, (испаряется в процессе сушки и обжига) и для бытовых нужд. Вода для бытовых нужд сливается в общегородскую канализацию.

Произведена так же оценка почвенного покрова, и приведена мера восстановления земли - это рекультивация.

Так же в данной работе представлены мероприятия по снижению отрицательного воздействия на окружающую среду.



Использованная литература


1.Кулагина Т.А.Теоретические основы защиты окружающей среды: Учеб. Пособие/Т.А. Кулагина. 2-е изд., перераб и доп. Красноярск: ИПЦ КГТУ, 2003-332с.

2.«Методика расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий. ОНД-86»,Ленинградгидрометеоиздат, 1986.

3.«Методика расчета выбросов от неорганизованных источников» , Новороссийск, 1989г, стр.3.

4.«Сборник методик по расчету выбросов в атмосферу загрязняющих веществ различными производствами»

5.Баженов, Ю.М. Проектирование предприятий по производству строительных материалов и изделий.2005г.

6.Рахалин, И.А. Основы проектирования керамических заводов. 1973г.

.Чаус, К.В. Технология производства строительных материалов, изделий и конструкций. 1998г

.Никифорова, Э.М. Проектирование и оборудование керамических цехов по производству стеновых материалов.2001г

9.Стандарт предприятия: Общие требования к оформлению текстовых и графических студенческих работ./под. ред.Т.В. Сильченко; Кранояр.гос.техн.ун-т. - Красноярск :ИПЦ КГТУ, 2005. - 58с.


Федеральное государственное автономное образовательное учреждение высшего профессионального образования «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Больше работ по теме:

КОНТАКТНЫЙ EMAIL: [email protected]

Скачать реферат © 2019 | Пользовательское соглашение

Скачать      Реферат

ПРОФЕССИОНАЛЬНАЯ ПОМОЩЬ СТУДЕНТАМ