Cолнечная и геотермальная энергетика

 

Содержание


Введение

История развития геотермальной энергетики

Геотермальная энергетика

Краткий обзор гидрогеотермических исследований

Основные месторождения термальных вод

Месторождение Манас

Современное состояние и перспективы развития геотермальной энергетики

Караганский комплекс

Достоинства и недостатки

Солнечная энергия

Гелиоэлектростанции

Типы гелиоэлектростанций

Земные условия

Экологические проблемы

Заключение

Список литературы

Анотация


В данной работе приведена сравнительный анализ солнечной и геотермальной энергетики. С начало рассматриваем развития геотермальной энергетики, как во всём мире, так и в нашей стране России. Выполнен анализ использования глубинного тепла Земли, для преобразования его в электрическую энергию, а также для обеспечения городов и посёлков теплом и горячим водоснабжением в таких регионах нашей страны, как на Камчатке, Сахалине, Северном Кавказе. Сделано экономическое обоснование разработки геотермальных месторождений, строительство электростанций и сроки их окупаемости. Сравнивая энергии геотермальных источников с другими видами источников электроэнергии получаем перспективность развития геотермальной энергетики, которая должна занять важное место в общем балансе использования энергии. В частности, для реструктуризации и перевооружения энергетики Камчатской области и Курильских островов, частично Приморья и Северного Кавказа следует использовать собственные геотермальные ресурсы.

Введение


Основными направлениями развития генерирующих мощностей в энергетике страны на ближайшую перспективу является техническое перевооружение и реконструкция электростанций, а также ввод новых генерирующих мощностей. Прежде всего это строительство парогазовых установок с КПД 5560%, что позволит повысить эффективность существующих ТЭС на 2540%. Следующим этапом должно стать сооружение тепловых электростанций с использованием новых технологий сжигания твёрдого топлива и со сверхкритическими параметрами пара для достижения КПД ТЭС, равного 46-48%. Дальнейшее развитие получат и атомные электростанции с реакторами новых типов на тепловых и быстрых нейтронах.

Важное место в формировании энергетики России занимает сектор теплоснабжения страны, который является самым большим по объёму потребляемых энергоресурсов более 45% их общего потребления. В системах централизованного теплоснабжения (ЦТ) производится более 71%, а децентрализованными источниками около 29% всего тепла. Электростанциями отпускается более 34% всего тепла, котельными примерно 50%. В соответствии с энергетической стратегией России до 2020г. планируется рост теплопотребления в стране не менее чем в 1,3 раза, причём доля децентрализованного теплоснабжения будет возрастать с 28,6% в 2000г. до 33% в 2020г.

Повышение цен, которое произошло в последние годы, на органическое топливо (газ, мазут, дизельное топливо) и на его транспортировку в отдалённые районы России и соответственно объективный рост отпускных цен на электрическую и тепловую энергию принципиально изменяют отношение к использованию НВИЭ: геотермальной, ветровой, солнечной.

солнечная геотермальная энергетика гелиоэлектростанция

Так, развитие геотермальной энергетики в отдельных регионах страны позволяет уже сегодня решать проблему электро и теплоснабжения, в частности на Камчатке, Курильских островах, а также на Северном Кавказе, в отдельных районах Сибири и европейской части России.

В числе основных направлений совершенствования и развития систем теплоснабжения должно стать расширения использования местных нетрадиционных возобновляемых источников энергии и в первую очередь геотермального тепла земли. Уже в ближайшие 7-10 лет с помощью современных технологий локального теплоснабжения благодаря термальному теплу можно сэкономить значительные ресурсы органического топлива.

В последнее десятилетие использование нетрадиционных возобновляемых источников энергии (НВИЭ) переживает в мире настоящий бум. Масштаб применения этих источников возрос в несколько раз. Данное направление развивается наиболее интенсивно по сравнению с другими направлениями энергетики. Причин этого явления несколько. Прежде всего, очевидно, что эпоха дешевых традиционных энергоносителей бесповоротно закончилась. В этой области имеется только одна тенденция - рост цен на все их виды. Не менее значимо стремление многих стран, лишенных своей топливной базы к энергетической независимости Существенную роль играют экологические соображения, в том числе по выбросу вредных газов. Активную моральную поддержку применению НВИЭ оказывает население развитых стран.

По этим причинам развитие НВИЭ во многих государствах приоритетная задача технической политики в области энергетики. В ряде стран эта политика реализуется через принятую законодательную и нормативную базу, в которой установлены правовые, экономические и организационные основы использования НВИЭ. В частности, экономические основы состоят в различных мерах поддержки НВИЭ на стадии освоения ими энергетического рынка (налоговые и кредитные льготы, прямые дотации и др.)

В России практическое применение НВИЭ существенно отстает от ведущих стран. Отсутствует какая-либо законодательная и нормативная база, равно как и государственная экономическая поддержка. Всё это крайне затрудняет практическую деятельность в этой сфере. Основная причина тормозящих факторов затянувшееся экономическое неблагополучие в стране и, как следствие трудности с инвестициями, низкий платежеспособный спрос, отсутствие средств на необходимые разработки. Тем не менее, некоторые работы и практические меры по использованию НВИЭ в нашей стране проводятся (геотермальная энергетика). Парогидротермальные месторождения в России имеются только на Камчатке и Курильских островах. Поэтому геотермальная энергетика не может и в перспективе занять значимое место в энергетике страны в целом. Однако она способна радикально и на наиболее экономической основе решить проблему энергоснабжения указанных районов, которые пользуются дорогим привозным топливом (мазут, уголь, дизельное топливо) и находятся на грани энергетического кризиса. Потенциал парогидротермальных месторождений на Камчатке способен обеспечить по разным источникам от 1000 до 2000 Мвт установленной электрической мощности, что значительно превышает потребности этого региона на обозримую перспективу. Таким образом, существуют реальные перспективы развития здесь геотермальной энергетики.

История развития геотермальной энергетики


Наряду с огромными ресурсами органического топлива Россия располагает значительными запасами тепла земли, которые могут быть преумножены за счет геотермальных источников, находящихся на глубине от 300 до 2500м в основном в зонах разломов земной коры.

Территория России хорошо исследована, и сегодня известны основные ресурсы тепла земли, которые имеют значительный промышленный потенциал, в том числе и энергетический. Более того, практически везде имеются запасы тепла с температурой от 30 до 200°С.

Ещё в 1983г. во ВСЕГИНГЕО был составлен атлас ресурсов термальных вод СССР. В нашей стране разведано 47 геотермальных месторождений с запасами термальных вод, которые позволяют получить более 240·10імі/сут. Сегодня в России проблемами использования тепла земли занимаются специалисты почти 50 научных организаций.

Для использования геотермальных ресурсов пробурено более 3000 скважин. Стоимость исследований геотермии и буровых работ, уже выполненных в этой области, в современных ценах составляет более 4млрд. долларов. Так на Камчатке на геотермальных полях уже пробурено 365 скважин глубиной от225до2266м и израсходовано (ещё в советское время) около 300млн. долларов (в современных ценах).

Эксплуатация первой геотермальной электростанции была начата в Италии в 1904г. Первая геотермальная электростанция на Камчатке, да и первая в СССР Паужетская ГеоТЭС была введена в работу в 1967г. и имела мощность 5мВт, увеличенную впоследствии до 11 мВт. Новый импульс развитию геотермальной энергетике на Камчатке был придан в 90-е годы с появлением организаций и фирм (АО "Геотерм", АО "Интергеотерм", АО "Наука"), которые в кооперации с промышленностью (прежде всего с Калужским турбинным заводом) разработали новые прогрессивные схемы, технологии и виды оборудования по преобразованию геотермальной энергии в электрическую и добились кредитования от Европейского банка реконструкции и развития. В результате в 1999г. на Камчатке была введена Верхне-Мутновская ГеоТЭС (три модуля по 4мВт.). Вводится первый блок 25мВт. первой очереди Мутновской ГеоТЭС суммарной мощностью 50мВт.

Вторая очередь мощностью 100МВт может быть введена в 2004 г.

Таким образом, ближайшие и вполне реальные перспективы геотермальной энергетики на Камчатке определились, что является положительным несомненным примером использования НВИЭ в России, несмотря на имеющиеся в стране серьезные экономические трудности. Потенциал парогидротермальных месторождений на Камчатке способен обеспечить 1000МВт установленной электрической мощности, что значительно перекрывает потребности этого региона на обозримую перспективу.

По данным Института вулканологии ДВО РАН, уже выявленные геотермальные ресурсы позволяют полностью обеспечить Камчатку электричеством и теплом более чем на 100 лет. Наряду с высокотемпературным Мутновским месторождением мощностью 300МВт (э) на юге Камчатки известны значительные запасы геотермальных ресурсов на Кошелевском, Больше Банном, а на севере на Киреунском месторождениях. Запасы тепла геотермальных вод на Камчатке оцениваются в 5000МВт (т).

На Чукотке также имеются значительные запасы геотермального тепла (на границе с Камчатской областью), часть из них уже от-крыта и может активно использоваться для близлежащих городов и посёлков.

Курильские острова также богаты запасами тепла земли, их вполне достаточно для тепло и электрообеспечения этой территории в течение 100200 лет. На острове Итуруп обнаружены запасы двухфазного геотермального теплоносителя, мощности которого (30МВт (э)) достаточно для удовлетворения энергопотребностей всего острова в ближайшие 100 лет. Здесь на Океанском геотермальном месторождении уже пробурены скважины и строится ГеоЭС. На южном острове Кунашир имеются запасы геотермального тепла, которые уже используются для получения электроэнергии и теплоснабжения г. Южно Курильска. Недра северного острова Парамушир менее изучены, однако известно, что и на этом острове есть значительные запасы геотермальной воды температурой от 70 до 95° С, здесь также строится ГеоТС мощностью 20 МВт (т).

Гораздо большее распространение имеют месторождения термальных вод с температурой 100-200°С. При такой температуре целесообразно использование низкокипящих рабочих тел в паротурбинном цикле. Применение двухконтурных ГеоТЭС на термальной воде возможно в ряде районов России, прежде всего на Северном Кавказе. Здесь хорошо изучены геотермальные месторождения с температурой в резервуаре от 70 до 180° С, которые находятся на глубине от 300 до 5000 м. Здесь уже в течение длительного времени используется геотермальная вода для теплоснабжения и горячего водоснабжения. В Дагестане в год добывается более 6 млн. м. геотермальной воды. На Северном Кавказе около 500 тыс. чел, используют геотермальное водоснабжение.

Приморье, Прибайкалье, Западно-Сибирский регион также располагают запасами геотермального тепла, пригодного для широкомасштабного применения в промышленности и сельском хозяйстве.


Геотермальная энергетика


Под геотермальной энергией понимают физическое тепло глубинных слоев земли, имеющих температуру, превышающую температуру воздуха на поверхности. В качестве носителей этой энергии могут выступать как жидкие флюиды (вода и/или пароводяная смесь), так и сухие горные породы, расположенные на соответствующей глубине. Из горячих недр Земли на ее поверхность постоянно поступает тепловой поток, интенсивность которого в среднем по земной поверхности составляет около 0,03Вт/мІ. Под воздействием этого потока, в зависимости от свойств горных пород, возникает градиент температуры - так называемая геотермальная ступень. В большинстве мест, геотермальная ступень составляет не более 2-3?С/100м.

Сегодня в качестве источников геотермальной энергии для получения тепла и/или для производства электроэнергии экономически целесообразно оказывается использовать лишь термальные воды и парогидротермы. Легкодоступных геотермальных месторождений с температурой более 100?С на земном шаре сравнительно немного.

Для производства электроэнергии с приемлемыми технико-экономическими показателями температура должна быть не ниже 100?С.

В настоящее время суммарная мощность действующих в мире геотермальных электростанций составляет около 10 ГВт (э). Суммарная мощность существующих геотермальных систем теплоснабжения оценивается примерно в 20 ГВт (э).

Основные проблемы геотермального теплоснабжения связаны с солеотложением и коррозионной стойкостью материалов и оборудования, работающих в условиях агрессивной среды.

С целью избегания загрязнения окружающей среды, рек и водоемов, извлекаемыми из недр земли минеральными соединениями современные технологии использования геотермальной энергии предусматривает обратную закачку отработавшего геотермального флюида в пласт.


Рис 1. Тепловая схема энергоустановки:

-парогенератор? 2 - накопитель пара? 3 - турбина? 4 - эжектор? 5 - конденсатор? 6,7 - насосы? ЭС - эксплуатационная скважина? НС - нагнетательная скважина.


Краткий обзор гидрогеотермических исследований


Гидрогеотермальные ресурсы наряду с солнечной, ветровой, приливно-отливной энергиями являются тем новым, возобновляемым источником энергии, который в перспективе реально может занять значительное место в топливно-энергетическом балансе ряда районов нашей страны.

Разнообразие природных условий и наличие естественных проявлений нефти, газа и многочисленных источников термальных минеральных вод с древнейших времен привлекало внимание естествоиспытателей к недрам Дагестана.

Одновременно местное население широко использовало термоминеральные источники не только для лечения недугов, но и для добычи поваренной соли, коммунальных нужд, выпечки хлеба и т.п. Широкой популярностью у местного населения пользовались Талгинские, Ахтынские, Каякентские, Каракайтагские, Рычальские, Истису, Ботлихские и многие другие термоминеральные источники.

Первые печатные сведения о термоминеральных водах Дагестана принадлежат русскому врачу И. Лериху, который дважды посещал Дагестан в начале ХV??? в. Вслед за ним сведения о подземных водах Дагестана приводятся в трудах С.Г. Гмелина, Г.В. Абиха, И. Березина.

Особый толчок к изучению подземных вод дало получение нефтяных фонтанов в Берикее в 1894 году и Каякенте в 1898 г. Вслед за этим Дагестан посещают такие крупные геологи, как Н.И. Барбот-де-Марни, К.П. Лысенко, В.И. Меллер, А.М. Коншин, А.А. Булгаков, К.В. Харичков, И.Н. Стрижов и др., в трудах которых имеется ряд интересных сведений и мыслей о подземных водах Дагестана. Однако вся гидрогеологическая информация до 20-х годов ХХ в. Носит эпизодический, разрозненный характер.

Исследования в широком масштабе стали проводиться только после победы Октябрьской революции. Большое внимание в эти годы уделяется изучению минеральных вод, лечебных грязей и развитию на их базе курортного строительства. В этот период были изучены источники, заслуживающие особого внимания по своим природным и бальнеологическим факторам: Талгинские, Зурамакентские, Каякентские, Истису и рассольные йодо-бромные воды Берикейского, Дузлакского, Дагогнинского месторождений и др.

С выходом в 1963г. Постановления Совета Министров СССР "О развитии работ по использованию в народном хозяйстве глубинного тепла Земли" в г. Махачкале наступает качественно новый этап в освоении геотермальных ресурсов.

Новый промышленный этап освоения термальных вод вызвал на первых порах особенно высокий энтузиазм. Объясняется он тем, что с помощью ликвидированных скважин удалось без существенных затрат реализовать в значительных количествах термальные воды. Резко выросли объемы поисково-разведочных, буровых, ремонтно-восстановительных работ на газонефтяных скважинах, а также научных исследований по прогнозной оценке запасов, разработке методов против коррозии и солеотложений, комплексному использованию термальных вод в тепло-хладоснабжении, бальнеологии и т п.

Учитывая, что на территории Дагестана расположены геотермальные площади с разнообразными геологическими условиями, содержащими практически все типичные особенности равнинных и предгорных геотермальных месторождений СССР, имеющиеся предпосылки определяют возможности и позволяют организовать исследовательские и опытно-конструкторские работы в этом районе с наименьшими затратами.


Основные месторождения термальных вод


Из числа разведанных - наиболее значительные месторождения термальных вод в Дагестане приурочены к среднемиоценовым отложениям (Махачкала-Тернаирское, Избербашское, Кизлярское и др.).

Промышленная термоводоносность в ряде районов установлена также по плиоценовому (Кизляр, Хасавюрт) и мезозойскому (Талги, Ахты и др.) комплексам. Ниже приводится краткая характеристика основных месторождений термальных вод Дагестана.

·Месторождение Махачкала-Тернаир

Находится в пределах г. Махачкала, приурочена к Махачкалинской антиклинальной складке и ее северо-западному переклинальному окончанию.

Геотермальное месторождение Махачкала-Тернаир по геологическим условиям относится к месторождениям пластового типа.

Промышленная термоводоносность приурочена к отложениям среднемиоценового возраста, водовмещающими являются песчаные свиты А+Б и В Чокракского горизонта, 1-я и 2-я песчаные пачки караганского горизонта.

На месторождении организовано два водозабора: Махачкалинский и Тернаирский.

·Махачкалинский водозабор

Фонд эксплуатационных скважин Махачкалинского водозабора включает 32 скважины, из которых: 14 - эксплуатационные, 6 - наблюдательные, 12 - в бездействии, из них: 4 - в простое, 1 - в ожидании ремонта, 7 - в ожидании проведения изоляционно-ликвидационных работ.

Первая песчаная пачка караганского горизонта разрабатывается тремя скважинами (№№ 24 т, 25 т, 26 т), эксплуатационные дебиты 80-545 мі/сут, температура воды на устье скважин 52-60єС, минерализация 4,5-5,0 г/л, давление 4,2-2,8 атм., годовой отбор по пласту составляет 89150 мі.

Вторая песчаная пачка караганского горизонта разрабатывается двумя скважинами (№№ 160, 180), эксплуатационные дебиты 65-130 мі/сут, температура воды на устье 54-59єС, минерализация 3,69-8,30 г/л, давление 4,8-1,4 атм. Годовой отбор по пласту составляет 56290 мі. Из караганского термоводоносного горизонта за год добыто 145,4 тыс. мі термальной воды.

На свиту А+Б чокракского горизонта оборудовано шесть скважин (№№ 20т, 30, 36, 37, 63, 215), эксплуатационные дебиты 4-475 мі/сут, температура на устье 38-54єС, минерализация 6,16-7,78 г/л, давление на устье 1,2-4,8 атм. годовая добыча по свиту А+Б чокракского горизонта составляет 218,365 тыс. мі.

Годовая добыча по Махачкалинскому водозабору составляет 406,5 тыс. мі.

Основная часть добытой воды использована на горячее водоснабжение жилых массивов и промышленных предприятий, незначительная часть на отопление, на розлив лечебно-столовой воды (скв.29 т, 83), на бальнеопроцедуры (скв.30, 215).

·Тернаирский водозабор

Фонд скважин состоит из 25 скважин, из которых 6 - эксплуатационные, 3 - наблюдательные, 9 - в простое, 7 - в ожидании изоляционно-ликвидационных работ.

В 1999-2001гг. водозабор функционировал круглогодично, основная разработка ведется в зимний период, когда за счет геотермального тепла отапливаются теплицы совхоза "Тепличный", служебные помещения Махачкалинского НГДУ и управления "Нефтесервис".

В летний период работают только две скважины 27 т и 38 т, термальной водой которых по двухконтурной системе подогревается питьевая вода, идущая на горячее водоснабжение жилмассива.

Основным продуктивным горизонтом является свита В2 чокракского горизонта, из которой поступает до 1,7 тыс. мі/сут, температура воды на устье 97-98єС, минерализация 21,99-22,03 г/л, давление на устье 8,8-9,2 атм. годовая добыча по свите В2 составляет 349,5 тыс. мі.

Годовая добыча термальной воды по месторождению Махачкала-Тернаир составляет 976,8 тыс. мі или 2,6 мі/сут.


Месторождение Манас


Расположено на берегу Каспийского моря, в пределах Карабудахкентского района Республики Дагестан, около сел. Манаскент, на территории санатория "Каспий" и включено в состав Центрального промыслового участка.

В 1966 г. Поисковая скважина на термальную воду № 9т из отложений караганского возраста, залегающих на глубине 1414-1448м дала приток лечебной термоминеральной воды, которая используется на бальнеопроцедуры в санитарно-курортном комплексе "Каспий".

Отборы составляют в зависимости от сезона 16-30 мі/сут, температура 41єС, минерализация 69,18 г/л, давление 0,5 атм., годовая добыча составляет 7,7 тыс. мі.

Вода этой скважины относится к минеральным рассольным хлоридным, натриевым, йодо-бромным.

Годовая добыча термальной воды по Центральному промысловому участку, в состав которого входят Махачкалинский водозабор и Манасское месторождение составляет 414,3 мі/сут.

·Месторождение Избербаш

Избербашское месторождение теплоэнергетических вод расположена в пределах г. Избербаш Республики Дагестан.

В геологическом отношении месторождение приурочена к Избербашской антиклинальной складке.

Водозабор Избербашского месторождения представляет 16 скважин, из которых 9 - находятся в эксплуатации, 3-наблюдательные, 2-в простое и 2 - в ожидании ликвидации.

Избербашский водозабор работает непрерывно на фонтанном режиме, геотермальные воды используются главным образом на горячее водоснабжение и розлив лечебно-столовой воды "Азиз". Эксплуатационные дебиты от 50 до 960 мі/сут, температура на устье 50-60єС, давление 0,6-3,6 атм., минерализация 2,02-5,52 г/л.

Сброс отработанных термальных вод осуществляется в городскую канализацию.

·Месторождение Каякент

Расположено в пределах сел. Новокаякент Каякентского района Республики Дагестан. Водозабор представлен 4 скважинами, восстановленными из нефтяного фонда и давшими промышленные притоки термальной воды, которая однотипна и характеризуется слабой минерализацией 1,3-1,86 г/л, гидрокарбанатно-сульфатным натриевым составом, высокой термальностью (45-59єС).

В настоящее время термальная вода используется на хозяйственно-бытовые цели: баня, детский сад, водоснабжение жилого сектора.

Дебиты скважин составляют 50 мі/сут, работают они на фонтанном режиме, избыточные давления на устьях скважин 1,4-1,9 атм. Годовая добыча термальных вод по Каякентскому водозабору составляет 77,5 тыс. мі.

·Месторождение Кизляр

Кизлярское месторождение высокопотенциальных термальных вод расположено в пределах города.

По геологическим условиям Кизлярское месторождение относится к типу пластовых с относительно простыми гидрогеотермическими условиями.

Воды высокотемпературные (отложения чокракского возраста), температура на устье скважин 100-104єС.

Кизлярский водозабор представлен 17-ю скважинами, из которых 7 - добычных, 2-нагнетателбные, 4-наблюдательные, 4 - в простое.

Чокракский водоносный горизонт-5 скважин (№№ 1т, 3т, 5т, 17т, 21т), эксплуатационные дебиты 1000-2500 мі/сут, температура 99-100єС, минерализация 1,83-9,2 г/л, избыточное давление на устье 7-14 атм.

·Месторождение Кардоновка

Расположено в Кизлярском районе в 10км к юго-востоку от г. Кизляра, в пределах с. Кордоновка.

В эксплуатации находится одна скважина № 4т, подающая термальную воду из апшеронского горизонта. На базе этой скважины функционирует колхозная баня и организован розлив столовой воды, дебит до 25 мі/сут, температура воды на устье скважин 40єС, минерализация 2,18г/л, избыточное давление 6,0 атм.


Рис 2. Принципиальная интегрированная схема использования геотермальных вод:

- добывающая скважина? 2 - выработка электроэнергии? 3 - холодильные процессы? 4 - теплицы? 5 - тепловая насосная установка? 6 - промышленные процессы? 7 - лесопильные предприятия? 8 - производство продуктов питания? 9 - дегидратация? 10 - сушка зерна? 11 - корм скота? 12 - центральное отопление и горячее водоснабжение? 13 - обогрев почвы и полив сельхозугодий? 14 - рыборазведение? 15 - химическое производство? 16 - бальнеолечение и бассейны? 17 - нагнетательная скважина.


Современное состояние и перспективы развития геотермальной энергетики


Мировой потенциал изученных на сегодня (2006 год) геотермальных ресурсов составляет 0,2 ТВт электрической и 4,4 ТВт тепловой мощности. Примерно 70% этого потенциала приходится на месторождения с температурой флюида менее 130?С.

Последние годы характеризуются резким увеличением объемов и расширением областей использования геотермальных ресурсов.

Новейшие энергетические технологии с использованием геотермальных ресурсов отличаются экологической чистотой и по эффективности приближаются к традиционным.

На современных ГеоЭС коэффициент использования мощности достигает до 90%, что в 3-4 раза выше, чем для технологий с использованием других ВИЭ (солнечной, ветровой, приливной). На ГеоЭС, использующих ГЦС-технологию и бинарный цикл (БЭС), полностью исключаются выбросы диоксида углерода в атмосферу, что является важнейшим экологическим преимуществом таких энергетических установок.

В последние годы быстрыми темпами развиваются технологии прямого использования геотермальных ресурсов в теплоснабжении, За последние 15 лет суммарная тепловая мощность геотермальных систем теплоснабжения увеличилась более трех раз и достигла 28 ГВт.

В таких системах в качестве первичного источника тепла используется низкопотенциальная (Т=55єС) термальная вода и петротермальная энергия верхних слоев земной коры. Общая установленная мощность теплонасосных систем слставляет 15,723 ГВт, при годовой выработке тепла 86673 ТДж. Наибольшее развитие технологии теплонасосных систем получила в США, Германии, Канаде.

Россия располагает не только большими запасами органического топлива, но и также и геотермальными ресурсами, энергия которых на порядок превышает весь потенциал органического топлива. Использование тепла Земли в России может составить до 10% в общем балансе теплоснабжения, На территории России разведано 66 геотермальных месторождений с производительностью более 240 000 мі/сут термальных вод и более 105 000 мі/сут парогидротерм. Пробурено свыше 4000 скважин для использования геотермальных ресурсов.

В настоящее время проблемами использования тепла земли занимаются около 50 научных организаций, которые находятся в ведении Российской академии наук и ряда министров.

Чтобы обеспечить высокую экономическую эффективность термальных вод необходимо максимально использовать тепловой потенциал, чего можно достигнуть при комплексном использовании этих вод. Примером комплексного использования термальных вод служит Мостовское месторождение в Краснодарском крае. Необходимо отметить, что эксплуатация большинства геотермальных месторождений ведется на достаточно низком уровне. Зачастую после потребителя, термальные воды сбрасываются с Т = 50-70єС. Полезно используется примерно 1/5 теплового потенциала термальной воды.

Из-за ошибочных технических решений (прямая подача потребителю воды, не соответствующей по химическому составу установленным нормам и т.д.) использование термальных вод во многих случаях было скомпрометировано.

Низкий уровень эксплуатации месторождений и огромная разница между значительными запасами геотермальной энергии и малой ее используемой частью объясняется некоторыми специфическими факторами, характеризующими эту энергию, а также технологией ее извлечения и использования.

Такими факторами являются:

высокая стоимость скважин и низкие транспортабельные качества термальных вод;

необходимость обратной закачки отработанных вод и значительные расходы на их подготовку;

невозможность аккумулирования тепловой энергии на длительный период;

коррозионно-агрессивные свойства;

одноразовость использования термальных вод в системе теплоснабжения и сравнительная их температура.

В связи с этим возникают научно-технические и технологические проблемы геотермальной энергетики, основными из которых являются:

освоение технологий строительства высокодебитных скважин с горизонтальными столами в продуктивном горизонте;

перевод бездействующих скважин на выработанных нефтяных и газовых месторождениях для добычи геотермального флюида;

широкое освоение ГЦС (геотермальных циркуляционных систем);

разработка эффективных методов борьбы с коррозией и солеотложением;

разработка эффективных технологий утилизации низкопотенциального геотермального тепла.

Области применения и эффективность использования геотермальных вод зависят от их энергетического потенциала, общего дебита и запаса скважин, химического состава, минерализации, агрессивных вод, наличия потребителя и т.д.

Наиболее эффективной областью применения геотермальных вод является отопление, горячее и техническое водоснабжение объектов различного назначения. Максимальный энергетический эффект достигается созданием специальных систем отопления с повышенным перепадом температур.

Сегодня используется 3,5% мирового геотермального потенциала для выработки электроэнергии и только 0,2% - для получения тепла.

В зависимости от температуры геотермальные ресурсы широко используются в электроэнергетике и теплофикации, промышленности, сельском хозяйстве, бальнеологии и других областях.

К началу 2005г. ГеоЭС работают в 24 странах мира, а суммарная установленная мощность их достигла 8910,7 МВт. Лидерами по установленной электрической мощности ГеоЭС являются США - 2544 МВт, Филиппины - 1931, Мексика - 953, Индонезия - 797, Италия - 790, Япония - 535, Новая Зеландия-435, Исландия - 200 МВт. Годовая выработка электроэнергии на ГеоЭС мира в 2004г. Составила 56 798 ГВт ч.

В последние годы активно развиваются геотермальные системы теплоснабжения на основе тепловых насосов.

Примерно 58% общей мощности геотермальных тепловых систем в мире приходится на теплонасосные системы. Общая установленная мощность теплонасосных систем составляет 15723 МВт, при годовой выработке тепла 86673 ТДж. Наибольшее развитие эти технологии получили в США, Германии, Канаде.

Благодаря переводу экономики на геотермальные ресурсы Исландия превратилась в развитую страну с высоким уровнем жизни. Более 87% теплоснабжения в Исландии осуществляется на геотермальном тепле, а в ближайшее время планируется довести до 92%. Примером успешной реализации крупного проекта является создание системы геотермального теплоснабжения г. Рейкьявика, которая обеспечивает около 99% потребностей в тепле. Данная система потребляет 2348л/с геотермальной горячей воды температурой 86…127?С (см. рис.3).

Геотермальная энергетика в бывшем СССР стала развиваться с середины 60-х годов прошлого столетия, когда впервые были созданы Северокавказская разведочная экспедиция по бурению и реконструкции нефтегазовых скважин на термальные воды.

С 1970 по 1990 годы добыча термальной воды была увеличена в 9 раз, а природного пара в 3,2 раза. В 1990г. Было добыто 53млн. мі термальной воды и 413 тыс. т приридного пара.

Россия располагает большими геотермальными ресурсами, энергия которых на порядок превышает весь потенциал органического топлива.

На территории России разведано 66 геотермальных месторождений с производительностью более 240тыс. мі/сут термальных вод и более 105тыс. т/сут парогидротерм. Пробурено свыше 4000 скважин для использования геотермальных ресурсов.

Наиболее перспективными для освоения геотермальной энергии являются Камчатско-Курильский, Западно-Сибирский и Северо-Кавказский регионы.

На Северном Кавказе хорошо изучены геотермальные месторождения, залегающие на глубинах от 300 до 5000 м.


Рис.3. Принципиальная схема организации теплоснабжения в г. Рейкьявике: (1 - добычные геотермальные скважины; 2 - деаэраторы; 3 - насосная станция; 4 - аварийные (резервные) баки; 5 - пиковая котельная; 6 - потребители тепла; 7 - нагнетательный канал).


Температура в глубоких резервуарах достигает до 180°С и выше. Эти месторождения способны обеспечить получение до 10000 тепловой и 200 МВт электрической мощности.

На Северном Кавказе около 500 тыс. человек используют геотермальные ресурсы для теплоснабжения в коммунально-бытовом секторе, сельском хозяйстве и промышленности.

Создание и пуск в эксплуатацию модульных геотермальных электрических и тепловых станций, а также создание ГеоЭС с комбинированным циклом вновь вводят Россию в число передовых стран в области геотермальной энергетики. На Мутновском геотермальном месторождении сегодня успешно работают 5 геотермальных энергоблоков. Общая установленная электрическая мощность ГеоЭС России составляет 73 МВт, а тепловая мощность энергоустановок прямого использования геотермального тепла 307 МВт.

При прямом использовании более половины добываемых ресурсов применяется для теплоснабжения жилых и промышленных помещений, треть? для обогрева теплиц, и около 13% для индустриальных процессов. Кроме того, термальные воды используются примерно на 150 курортах и 40 предприятиях по розливу минеральной воды.

Чокракский комплекс

В пределах Предгорного Дагестана Чокракские отложения, являющиеся источником тепловодоснабжения, распространены регионально, характеризуются выдержанностью мощностей и представлены чередованием мощных пачек высокопроницаемых равномернозернистых слабосцементированных песчаников и глин. По характеру распределения песчано-глинистых отложений в разрезе и гидрогеологическим особенностям чокракский водоносный комплекс подразделяется на верхнюю и нижнюю части.

Нижнечокракские отложения характеризуются региональной нефтегазоносностью, непостоянством мощностей, преобладанием глинистых разностей в разрезе.

Свита "Г" представлена мощной пачкой высокопроницаемых песчаников, довольно хорошо прослеживаемой в пределах всей территории Предгорного Дагестана. Наибольшее развитие свита имеет в районе г. Махачкалы, где мощность ее достигает 470м, а песчанистость 370м.

Свита "В" широко распространена в пределах всей территории Предгорного Дагестана. Литологически она представлена мощными пластами водонапорных песчаников, чередующихся с пачками глин. Мощность отдельных грубозернистых пластов достигает 20м.

Свита "Б" получила максимальное развитие в пределах Западной антиклинальной зоны, а также в районах Избербаша, Каякента. Представлена она массовым пластом песчаника, местами грубозернистого, с окатанной кварцевой галькой. Песчаники рыхлые, слабосцементированные и высокопроницаемые. Характерной особенностью свиты "Б" является региональная выдержанность песчаных пластов на значительные расстояния как по падению, так и по простиранию.

Свита "А" представлена кварцевыми песчаниками с прослоем глин. Песчаники мелко - и среднезернистые, слабосцементированные, отличаются плохой сортировкой обломочного материала по размерам, форме и степени окатанности. Наибольшая мощность свиты "А" отличается в Южном Дагестане, где она достигает 100м на площади Каякент, 55-60, реже 85м ? в пределах Западной антиклинальной зоны. К северу мощность уменьшается: в Избербаше до 20м, Махачкале до 30м.

Общая мощность верхнего чокрака составляет 300-500м, при этом суммарная мощность песчаников изменяется незначительно, колеблется в пределах 150-200м, и лишь в Южном Дагестане в районах Дербента она снижается до 60м.


Караганский комплекс


Краткое описание караганских отложений дается согласно стратиграфической схеме Н.Б. Вассоевича, который подразделяет их на два отдела ? верхний и нижний, каждый из которых в свою очередь делится по маркирующим горизонтам (верхний - на три, нижний - на четыре). Таким образом, снизу вверх выделяются семь подсвит, которые прослеживаются в пределах Терско-Дагестанской нефтегазоносной области.

Алистанджинская подсвита мощностью 25-60м представлена в основном глинами с прослоями мергелей и одной песчано-алевролитовой пачкой мощностью 10-16, местами до 30м.

Нижнекумская подсвита сложена песчано-алевролитовыми и глинистыми породами, в составе которой выделяются три песчано-алевролитовые пачки суммарной мощностью от 10 до 30м.

Верхнекумская подсвита представлена почти полностью глинами общей мощностью порядка 40м и не представляет определенного интереса в гидрологогеологическом отношении.

Ярыксуйскае подсвита в северной части Предгорного Дагестана составляет четвертую часть суммарной мощности карагана. Мощность подсвиты возрастает в восточном направлении и в долине р. Сулак составляет 110м, в с. Кумторкала 115м, лале уменьшается в районе г. Махачкала.

Ачисуйская подсвита представлена в основном песчано-алевролитовыми породами с прослоями глин. Общая мощность подсвиты в долине р. Аксай составляет 40-45м, а песчаного пласта S6 23м.

Белгатойская подсвита представлена переслаиванием глин с песчано-алевролитовыми породами, среди которых выделяются маломощные 1,5-10-метровые песчаные пласты S4 и S3.

Шауданская подсвита по мощности, составляющей обычно 50-60м, является регионально выдержанной в Предгорном Дагестане.

В последние годы термоводоносность караганских горизонтов изучена на ряде площадей: Махачкала, Тернаир, Кизляр, Каякент, Каспийск, Манас, Герга и т.д., что позволяет характеризовать их в целом как высокопродуктивные.

Дебиты скважин при самоизливе колеблются от 450мі/сут (Герга) до 2000 (Махачкала) и 3500мі/сут (Кизляр), температура при самоизливе ? от 0,3 до 1,4 МПа.


Достоинства и недостатки


Для плодотворного использования тепла Земли необходимо обладать подробными и достоверными сведениями о преимуществах и недостатках этого типа альтернативных источников энергии.

К наиболее явным преимуществам геотермальной энергии следует отнести их фактическую неисчерпаемость и стабильность действия. Конечно, теоретически температура верхних слоёв Земли под влиянием человеческой деятельности может снизиться, но представить такую интенсивную деятельность на практике невозможно.

Теплом Земли можно пользоваться постоянно, в отличие от энергии ветра или Солнца. Представить себе безветренную или пасмурную погоду не составит труда.

А вот представить Землю, которая периодически остывает, может только человек с необычайно развитым воображением. Впрочем, недостатки геотермальной энергии также присутствуют.

Получать значительные объёмы энергии Земли могут далеко не все страны мира, а только те из них, которые расположены в вулканических районах планеты.

Кроме того, при использовании геотермальной энергии необходимо позаботиться о защите окружающей среды, которая может пострадать вследствие выбросов отработанной воды.

Использование подземных вод может представлять опасность для здоровья человека, поскольку могут содержать токсичные соединения.

Геотермальная энергия всегда привлекала людей возможностями полезного применения. Главным достоинством геотермальной энергии является ее практическая неиссякаемость и полная независимость от условий окружающей среды, времени суток и года. Геотермальная энергия своим "проектированием" обязана раскаленному центральному ядруЗемли <#"justify">Выводы:

Практически на всей территории России имеются уникальные запасы геотермального тепла с температурами теплоносителя (вода, двухфазный поток и пар) от 30 до 200є С.

В последние годы в России на основе крупных фундаментальных исследований были созданы геотермальные технологии, способные быстро обеспечить эффективное применение тепла земли на ГеоЭС и ГеоТС для получения электроэнергии и тепла.

Геотермальная энергетика должна занять важное место в общем балансе использования энергии. В частности, для реструктуризации и перевооружения энергетики Камчатской области и Курильских островов и частично Приморья, Сибири и Северного Кавказа следует использовать собственные геотермальные ресурсы.

Широкомасштабное внедрение новых схем теплоснабжения с тепловыми насосами с использованием низкопотенциальных источников тепла позволит снизить расход органического топлива на 20ч25%.

Для привлечения инвестиций и кредитов в энергетику следует выполнять эффективные проекты и гарантировать своевременный возврат заемных средств, что возможно только при полной и своевременной оплате элект-ричества и тепла, отпущенных потребителям.


Солнечная энергия


Солнце, как известно, является первичным и основным источником энергии для нашей планеты. Оно греет всю Землю, приводит в движение реки и сообщает силу ветру. Под его лучами вырастает 1 квадриллион тонн растений, питающих, в свою очередь, 10 триллионов тонн животных и бактерий. Благодаря тому же Солнцу на 3емле накоплены запасы углеводородов, то есть нефти, угля, торфа и пр., которые мы сейчас активно сжигаем. Для того чтобы сегодня человечество смогло удовлетворить свои потребности в энергоресурсах, требуется в год около 10 миллиардов тонн условного топлива. (Теплота сгорания условного топлива - 7 000 ккал/кг).

Солнечная энергетика - использование солнечного излучения для получения энергии в каком-либо виде. Солнечная энергетика использует возобновляемый источник энергии и в перспективе может стать экологически чистой, то есть не производящей вредных отходов.

Ныне солнечная энергетика широко применяется в случаях, когда малодоступность других источников энергии в совокупности с изобилием солнечного излучения оправдывает её экономически.

Если энергию, поставляемую на нашу планету Солнцем за год, перевести в то же условное топливо, то эта цифра составит около 100 триллионов тонн. Это в десять тысяч раз больше, чем нам нужно. Считается, что на 3емле запасено 6 триллионов тонн различных углеводородов. Если это так, то содержащуюся в них энергию Солнце отдает планете всего за три недели. И резервы его настолько велики, что светиться так же ярко оно сможет еще около 5 миллиардов лет.3емные зеленые растения и морские водоросли утилизируют примерно 34% поступающей от Солнца энергии. Остальное теряется почти впустую, расходуясь на поддержание комфортного для жизни микроклимата в глубинах океана и на поверхности Земли. И если бы человек смог взять для своего внутреннего потребления хотя бы один процент (то есть 1 триллион тонн того самого условного топлива в год), то это бы решило многие проблемы на века вперед. И теоретически вполне понятно, как именно взять этот процент.

Все началось с Альберта Эйнштейна. Многие помнят, что этот ученый был удостоен в 1921 году Нобелевской премии. Но мало кто знает, что получил он ее не за создание теории относительности, а за объяснение законов внешнего фотоэффекта. Еще в 1905 году он опубликовал работу, в которой, опираясь на гипотезу Планка, описал как именно и в каких количествах кванты света "вышибают" из металла электроны. Получить электрический ток с помощью фотоэффекта впервые удалось советским физикам в 30-е годы прошлого века. Произошло это в Физикотехническом институте, руководил которым знаменитый академик А.Ф. Иоффе. Правда, КПД тогдашних солнечных сернисто-талиевых элементов еле дотягивал до 1%, то есть в электричество обращался лишь 1% падавшей на элемент энергии, но задел был положен. В 1954 году американцы Пирсон, Фуллер и Чапин запатентовали первый элемент с приемлемым (порядка 6%) КПД. А с 1958 года кремниевые солнечные батареи стали основными источниками электричества на советских и американских космических аппаратах.

К середине 70-х годов КПД солнечных элементов приблизился к 10-процентной отметке и. почти на два десятилетия замер на этом рубеже. Для космических кораблей этого вполне хватало, а для наземного использования производство весьма дорогих солнечных батарей 11 кг кремния необходимого качества стоил тогда до 100 долларов) по сравнению с сжиганием дешевой нефти выглядело непозволительной роскошью. Как следствие-большинство исследований по разработке новых технологий в области солнечной энергетики было свернуто, а финансирование оставшихся сильно сокращено. В начале 90-х годов нынешний лауреат Нобелевской премии академик Жорес Алферов на собрании АН СССР заявил, что если бы на развитие альтернативной энергетики (а солнечная энергетика у нас считается одним из ее видов) было бы потрачено хотя бы 15% из тех средств, что мы вложили в энергетику атомную, то АЭС нам бы сейчас вообще бы ли не нужны. Судя по тому, что даже на тех крохах, которые выделялись "на Солнце", удалось к середине 90-х поднять КПД солнечных элементов до 15, а к началу нового века - до 20%, утверждение академика недалеко от истины.

В качестве материала для производства солнечных элементов сегодня используется кремний. Второй по распространенности на Земле, после кислорода, элемент. На кремний приходится более четверти общей массы земной коры. Минус в том, что встречается он в виде окиси - SiO2. Это тот самый песок, которым наполняют детские песочницы и используют при замешивании цементного раствора. Извлечь из него чистый кремний весьма сложно. Настолько сложно, что стоимость силициума (так химики называют кремний), в котором не более 1 грамма примесей на 10 килограммов продукта, сопоставима со стоимостью обогащенного урана, используемого на атомных электростанциях.3апасы кремния превышают запасы урана почти в 100 000 раз, однако хорошего "солнечного" вещества человечество добывает в шесть раз меньше, чем хорошего атомного урана.

Заметим, что извлечь из породы килограмм урана значительно сложнее, чем получить из кварцевого песка килограмм силициума. Поэтому грязный кремний, добываемый электродуговым способом и содержащий более 1 % примесей, стоит чуть больше одного доллара за 1 кг и производится мегатоннами в год. Цена на природный уран на порядок выше. После обогащения, когда доля нужного 235-го изотопа повышается до 4,4%, стоимость урана подскакивает до 400 долларов за 1 кг и становится сопоставима с ценой того самого кремния, из которого делают микросхемы и солнечные элементы. Столь, в общем-то, невысокая стоимость ядерного топлива обусловлена и тем, что в создание технологи его добычи и обогащения за последние полстолетия были вложены огромные средства. Кремний же по сию пору в промышленности извлекают и очищают теми же способами, что и в конце 50-х годов прошлого века. В следствие несовершенства технологий - высокая стоимость продукта большие энергозатраты, экологическая опасность и - низкий выход.

Из тонны кварцевого песка, в котором находится около 500 кг кремния при самой распространенной на сегодняшний день технологии электродугового извлечения и хлорсилановой очистке получают 50-90 кг солнечного силициума. При этом на получение 1 кг расходуется столько энергии, что "киловаттный" чайник мог бы на ней непрерывно работать в течение 250 часов. Все это тем более странно оттого, что новые, гораздо более удачные технологии давно существуют. Еще в 1974 году немецкая фирма Siemens научилась получать чистый кремний с помощью карботермического цикла. Не будем вдаваться в подробности химического процесса, просто скажем, что в этом случае энергозатраты падают на порядок, а выход продукта увеличивается в 10-15 раз. Соответственно, и стоимость получаемого кремния падает до 5-15 долларов за килограмм.

Здесь-то и кроется особая выгода для России. Для немецкой технологии простой песок уже не подходит, тут нужны так называемые "особо чистые кварциты", самые крупные залежи которых находятся в нашей стране. Кроме того, по мнению тех же специалистов из Siemens, наши кварциты наиболее качественные и их запасов хватит на всех. Электричество относится к числу плохо запасаемых продуктов, поэтому производится его всегда практически столько же, сколько и потребляется. Общая мощность всех земных электростанций составляет примерно 2 000 ГВт. Один тераватт-год - это примерно 13% от всей потребляемой человечеством энергии. Для того чтобы получить этот тераватт от Солнца, стандартными кремниевыми панелями нужно "замостить" территорию в 40 000 км2. Это с учетом того, что работать станция будет только днем. Квадрат со стороной 200 км - примерно одна двухсотая часть пустыни Сахара. Задача, с которой современное человечество вполне может справиться. Однако решать ее с ходу нельзя. Ибо при этом возникают сразу две огромные проблемы.

Первая - это хранение энергии. Производить энергию такая "гигастанция" сможет только днем, а человечеству она нужна круглые сутки.3начит, на ночь ее дневные излишки нужно в чем-то запасать. В аккумуляторах, в гигантских конденсаторах, в супермаховиках. Такие "энергохранилища" будут стоить не намного дешевле, чем сама СЭС. Второе - изменение климата. Конечно, не на всей планете, а в месте постройки. Если раньше солнечная энергия в этих местах шла на нагрев почвы и воздуха, то теперь ее часть пойдет на получение электричества. Температура в районе электростанции, а 40 000 км2 - это немало, практически Московская область, - несколько упадет. В ее центре появится то, что климатологи называют "бароцентром" - область постоянного пониженного давления, в которой обычно формируются мощные циклоны. Циклоны эти будут окроплять территорию электростанции и прилегающие районы дождями, а небо над нашими батареями заволокут грозовые тучи.

Соответственно, и выработка энергии уменьшится в десятки раз. Обе эти глобальные проблемы имеют одно простое решение. А именно, надо строить не одну электростанцию на 40 000 км2, а 400 электростанций по 100 км2. И располагать их по земному экватору в наиболее солнечных районах (ученые говорят - в районах с наиболее высокой соляризацией). И объединять их в единую сеть. Тогда в то время, пока одни станции будут отдыхать на ночной стороне Земли, другие, противоположные, - поставлять энергию. Каких-то особых погодных отклонений в пятачках 10х10 км происходить не должно. Но лучше всего было бы построить даже не 400 крупных электростанций, а несколько десятков крупных и много - много мелких, скажем, размером 10х10 м. И это предложение вполне реализуемое. Но об этом - чуть ниже.

Вообще-то в солнечной энергетике свет клином на кремниевых элементах не сошелся. Способов преобразования энергии Солнца в электрическую существует множество. Использование солнечных батарей (то есть фотоэлектрических преобразователей) - лишь один из них. Способ этот хорош, во-первых, своей мобильностью, во-вторых, - долговечностью. Солнечную батарею можно установить на крыше автомобиля и крыльях самолета. Ее можно встроить в часы, калькулятор, ноутбук и даже, как это ни парадоксально, в фонарик. В солнечном элементе отсутствуют какие-либо движущиеся части, и срок его службы составляет примерно 30 лет. За эти 30 лет элемент, на изготовление которого ушел всего 1 кг солнечного кремния, может дать столько же электроэнергии, сколько производится из 100 тонн нефти на ТЭС или из 1 кг обогащенного урана на АЭС.


Вблизи голландского городка Херхюговарда создан экспериментальный район "Город солнца". Крыши домов здесь покрыты солнечными панелями. Дом на снимке вырабатывает до 25 кВт. Общую мощность "Города солнца" планируется довести до 5 МВт. Такие дома становятся автономными от системы. Солнце можно использовать и как источник энергии для транспортных средств. В Австралии уже 19 лет проводятся ежегодные гонки на солнечных электромобилях на трассе между городами Дарвин и Аделаида (3000 км). В 1990 году компания Sanyo построила самолет на солнечных батареях. Под солнечной крышей МИРА (энергостанции и "солнечные дома") В Нью-Йорке солнечную энергию используют даже мусорщики. Здесь в двух районах уже полтора года действуют интеллектуальные солнечные контейнеры для мусора - BigBelly. Используя энергию света, преобразованную в электричество кремниевыми фотоэлементами они утрамбовывают слдержимое. Сфокусированный СВЧ-луч может передавать собранную солнечными батареями энергию на Землю, а может снабжать ею космические корабли. В отличие от солнечного света этот СВЧ-луч при "пробое" атмосферы потеряет не более 2% энергии. Недавно задумку воскресил Дэвид Крисвелл.

Солнечная установка мощностью 1 кВт сегодня в США стоит примерно 3 000 долларов. Однако окупается она только на 14-15-м году работы, а это, по сравнению с теми же тепловыми электростанциями, непозволительно долго. Поэтому для преобразования солнечной энергии в электрическую в промышленных масштабах сейчас в основном используют способ, предложенный, согласно легенде, еще в III веке до н.э. знаменитым ученым Архимедом Сиракузским. Правда, солнечный свет он применял тогда вовсе не с целью получения дешевой энергии, а для обороны родных Сиракуз, атакованных с моря галерами римского полководца Марцелла. Вот что писал об этом в своей "Истории" византийский хронист Цеци: "Когда римские корабли находились на расстоянии полета стрелы, Архимед стал действовать шестиугольным зеркалом, составленным из небольших четырехугольных зеркал, которые можно было двигать при помощи шарниров и металлических планок. Он установил это зеркало так, чтобы оно пересекалось в середине зимней и летней солнечными линиями, и поэтому принятые этим зеркалом солнечные лучи, отражаясь, создавали жар, который обращал суда римлян в пепел, хотя они находились на расстоянии полета стрелы".

Именно на этом принципе основана работа современных гелиоэлектростанций. Установленные на значительной, до нескольких тысяч квадратных метров, территории зеркала-гелиостаты, поворачивающиеся вслед за Солнцем, направляют лучи солнечного света на емкость с теплоприемником, в качестве которого обычно выступает вода. Дальше все происходит так же, как на обычных ТЭС: вода нагревается, закипает, превращается в пар, пар крутит турбину, турбина передает вращение на ротор генератора, а тот вырабатывает электричество. В США сейчас действуют несколько гибридных солнечно-тепловых электростанций общей мощностью более 600 МВт. Днем они работают от Солнца, а ночью, чтобы вода не остывала и электричество не кончалось, - от газа. Температура пара в установках достигает 370 градусов Цельсия, а давление - 100 атмосфер.

Первая промышленная солнечная электростанция была построена в 1985 году в СССР в Крыму, недалеко от города Щелкино. СЭС-5 имела пиковую мощность 5 МВт. Столько же, сколько у первого ядерного реактора. За 10 лет работы она выработала всего 2 миллиона кВт. час электроэнергии, однако стоимость ее электричества оказалась довольно высокой, и в середине 90-х ее закрыли. В это время работы активизировались в Штатах, где компания Loose lndustries в самом конце 1989 года запустила 80-мегаваттную солнечно-газовую электростанцию. За следующие 5 лет та же компания, только в Калифорнии, построила таких СЭС еще на 480 МВт и довела стоимость одного "солнечно-газового" кВт. часа до 7-8 центов. Что совсем неплохо по сравнению с 15 центами за кВт. час энергии - во столько обходится электричество, производимое на АЭС.

Использовать энергию Солнца в быту можно и без превращения ее в электричество. Для того чтобы "протопить" холодную комнату или нагреть воду в водопроводе, можно напрямую воспользоваться солнечным теплом. Установки, собирающие, сохраняющие и передающие это тепло, называются солнечными коллекторами. В простейшем варианте все выглядит так: на крыше дома или на его южной стене устанавливается панель, состоящая из тоненьких трубочек, по которым в специальный бак-аккумулятор подается вода. Солнце нагревает трубки, те нагревают воду, вода (температура которой в этой системе при использовании зеркального поддона может доходить до 60-90°С) накапливается в баке и потом используется для обогрева или горячего водоснабжения. Дома, оборудованные такими системами (которые обычно доукомплектовываются и кремниевыми солнечными элементами), называются "солнечными домами". С одной стороны, этот дом стоит несколько дороже, чем обычный, но с другой - он позволяет резко сократить коммунальные платежи - на 50-70%.

Однако встречаются и более серьезные системы. Одна из таких была сооружена в США в штате Нью-Мексико еще в 1978 году и работает до сих пор. Называется - Национальная солнечная установка для тепловых испытаний (NSTTF).


Американская солнечная установка NSTTF для тепловых испытаний и экспериментов в области энергетики. Одним из старых способов забора солнечной энергии являетяся СЭС, придуманная Бернардом Дюбо. Он предлагал строить в пустынях обширные стеклянные навесы с высокой трубой. Под солнечной крышей МИРА (энергостанции) Ассоциация TransOption, объединяющая государ-ственные и частные транспортные компании штата Нью-Джерси, ежегодно организуют среди школьных команд гонки автомобильных моделей, приводимых в движение солнечной энергией. Гелиоэлектростанции


Гелиоэнергетические программы приняты более чем в 70 странах - от северной Скандинавии до выжженных пустынь Африки. Устройства, использующие энергию солнца, разработаны для отопления, освещения и вентиляции зданий, небоскрёбов, опреснения воды, производства электроэнергии. Такие устройства используются в различных технологических процессах. Появились транспортные средства с "солнечным приводом": моторные лодки и яхты, солнцелеты и дирижабли с солнечными панелями. Солнцемобили, вчера сравниваемые с забавным автоаттракционом, сегодня пересекают страны и континенты со скоростью, почти не уступающей обычному автомобилю.

Концентраторы солнечного излучения. С детства многие помнят, что с помощью собирательной линзы от солнечного света можно зажечь бумагу. В промышленных установках линзы не используются: они тяжелы, дороги и трудны в изготовлении. Сфокусировать солнечные лучи можно и с помощью вогнутого зеркала. Оно является основной частью гелиоконцентратора, прибора, в котором параллельные солнечные лучи собираются с помощью вогнутого зеркала. Если в фокус зеркала поместить трубу с водой, то она нагреется. Таков принцип действия солнечных преобразователей прямого действия.

Наиболее эффективно их можно использовать в южных широтах, но и в средней полосе они находят применение. Зеркала в установках используются либо традиционные - стеклянные, либо из полированного алюминия.

Технически концентрацию можно осуществлять с помощью различных оптических элементов - зеркал, линз, световодов и пр., однако при высоких уровнях мощности концентрируемого излучения практически целесообразно использовать лишь зеркальные отражатели.

Основным энергетическим показателем концентратора солнечного излучения является коэффициент концентрации, который определяется как отношение средней плотности сконцентрированного излучения к плотности лучевого потока, падающего на отражающую поверхность при условии точной ориентации на Солнце.

Концентрирующая способность реальных систем значительно ниже Пред (Пред = 46 160), но также определяется прежде всего геометрией концентратора и угловым радиусом солнечного диска. Существенно на неё влияет и отражательная способность зеркальной поверхности, особенно в случае многократных отражений.

Высокопотенциальные системы концентрации должны иметь конфигурацию, близкую к форме поверхностей вращения второго порядка - параболоида, эллипсоида, гиперболоида или полусферы. Только в этом случае может быть достигнута плотность излучения, в сотни и тысячи раз превышающая солнечную постоянную.

Наиболее эффективные концентраторы солнечного излучения имеют форму: цилиндрического параболоида; параболоида вращения; плоско-линейной линзы Френеля. Параболоидная конфигурация имеет явное преимущество перед другими формами по величине концентрирующей способности. Поэтому именно они столь широко распространены в гелиотехнических системах. Оптимальный угол раскрытия реальных параболоидных концентраторов, в отличие от угла идеального параболоид. концентратора (45град.), близок к 60 град. Солнечная энергия может непосредственно преобразовываться в механическую. Для этого используется двигатель Стирлинга (двигатель внешнего сгорания, пример-паровоз). Если в фокусе параболического зеркала диаметром 1,5 м установить динамический преобразователь, работающий по циклу Стирлинга, получаемой мощности достаточно, чтобы поднимать с глубины 20 метров 2 куб. м. воды в час. В реальных гелиосистемах плоско-линейная линза Френеля используется редко из-за ее высокой стоимости. Первые попытки использования солнечной энергии на широкой коммерческой основе относятся к 80-м годам нашего столетия. Крупнейших успехов в этой области добилась фирма Loose Industries (США). Ею в декабре 1989 года введена в эксплуатацию солнечно-газовая станция мощностью 80 МВт.

Здесь же, в Калифорнии, в 1994 году введено еще 480 МВт электрической мощности, причем, стоимость 1 кВтч энергии - 7.8 центов. Это ниже, чем на большинстве традиционных станций. (Атомные станции США ~ 15 центов за 1Квт.). В ночные часы и зимой энергию дает, в основном, газ, а летом в дневные часы - солнце. Фирма Loose Industries на солнечно-газовой электростанции в Калифорнии использует систему параболоцилиндрических длинных отражателей в виде желоба. В его фокусе проходит труба с теплоносителем - дифенилом, нагреваемым до 350°С. Желоб поворачивается для слежения за солнцем только вокруг одной оси (а не двух, как плоские гелиостаты). Это позволило упростить систему слежения за солнцем.

На острове Сицилия еще в начале 80-х годов дала ток солнечная электростанция мощностью 1 МВт. Принцип ее работы тоже башенный. Зеркала фокусируют солнечные лучи на приемнике, расположенном на 50-метровой высоте. Там вырабатывается пар с температурой более 600°С, который приводит в действие традиционную турбину с подключенным к ней генератором тока. Неоспоримо доказано, что на таком принципе могут работать электростанции мощностью 10-20 МВт, а также и гораздо больше, если группировать подобные модули, подсоединяя их друг к другу.

Несколько иного типа электростанция в Алькерии на юге Испании. Ее отличие в том, что сфокусированное на вершину башни солнечное тепло приводит в движение натриевый круговорот, а тот уже нагревает воду до образования пара. У такого варианта ряд преимуществ. Натриевый аккумулятор тепла обеспечивает не только непрерывную работу электростанции, но дает возможность частично накапливать избыточную энергию для работы в пасмурную погоду и ночью. Мощность испанской станции имеет всего 0,5 МВт. Но на ее принципе могут быть созданы куда более крупные - до 300 МВт. В установках этого типа концентрация солнечной анергии настолько высока, что КПД паротурбинного процесса здесь ничуть не хуже, чем на традиционных тепловых электростанциях.

По мнению специалистов, наиболее привлекательной идеей относительно преобразования солнечной энергии является использование фотоэлектрического эффекта в полупроводниках.

Электростанция в Калифорнии проде-монстрировала, что газ и солнце, как основные источники энергии ближайшего будущего, способны эффективно дополнять друг друга. Поэтому не случаен вывод, что в качестве партнера солнечной энергии должны выступать различные виды жидкого или газообразного топлива.


Типы гелиоэлектростанций


В настоящее время строятся солнечные электростанции в основном двух типов: СЭС башенного типа и СЭС распределенного (модульного) типа.

Идея, лежащая в основе работы СЭС башенного типа, была высказана более 350 лет назад, однако строительство СЭС этого типа началось только в 1965 г., а в 80-х годах был построен ряд мощных солнечных электростанций в США, Западной Европе, СССР и в других странах.

В 1985 г. в п. Щелкино Крымской области была введена в эксплуатацию первая в СССР солнечная электростанция СЭС-5 электрической мощностью 5 МВт; 1600 гелиостатов (плоских зеркал) площадью 25,5 м2 каждый, имеющих коэффициент отражения 0,71, концентрируют солнечную энергию на центральный приемник в виде открытого цилиндра, установленного на башне высотой 89 м и служащего парогенератором.



В башенных СЭС используется центральный приемник с полем гелиостатов, обеспечивающим степень концентрации в несколько тысяч. Система слежения за Солнцем значительно сложна, так как требуется вращение вокруг двух осей. Управление системой осуществляется с помощью ЭВМ. В качестве рабочего тела в тепловом двигателе обычно используется водяной пар с температурой до 550 оС, воздух и другие газы - до 1000 оС, низкокипящие органические жидкости (в том числе фреоны) - до 100 оС, жидкометаллические теплоносители - до 800 оС.

Главным недостатком башенных СЭС являются их высокая стоимость и большая занимаемая площадь. Так, для размещения СЭС мощностью 100 МВт требуется площадь в 200 га, а для АЭС мощностью 1000 МВт - всего 50 га. Башенные СЭС мощностью до 10 МВт нерентабельны, их оптимальная мощность равна 100 МВт, а высота башни 250 м.

В СЭС распределительного (модульного) типа используется большое число модулей, каждый из которых включает параболо-цилиндрический концентратор солнечного излучения и приемник, расположенный в фокусе концентратора и используемый для нагрева рабочей жидкости, подаваемой в тепловой двигатель, который соединен с электрогенератором. Самая крупная СЭС этого типа построена в США и имеет мощность 12,5 МВт.

При небольшой мощности СЭС модульного типа более экономичны чем башенные. В СЭС модульного типа обычно используются линейные концентраторы солнечной энергии с максимальной степенью концентрации около 100.

В соответствии с прогнозом в будущем СЭС займут площадь 13 млн. км2 на суше и 18 млн. км2 в океане.

СЭС на базе солнечных прудов значительно дешевле СЭС других типов, так как они не требуют зеркальных отражателей со сложной системой ориентации, однако их можно сооружать только в районах с жарким климатом.

В солнечном пруду происходит одновременное улавливание и накапливание солнечной энергии в большом объеме жидкости. Обнаружено, что в некоторых естественных соленых озерах температура воды у дна может достигать 70 оС. Это обусловлено высокой концентрацией соли.



В обычном водоеме поглощаемая солнечная энергия нагревает в основном поверхностный слой и эта теплота довольно быстро теряется,особенно в ночные часы и при холодной ненастной погоде из-за испарения воды и теплообмена с окружающим воздухом. Солнечная энергия, проникающая через всю массу жидкости в солнечном пруду, поглощается окрашенным в темный цвет дном и нагревает прилегающие слои жидкости, в результате чего температура ее может достигать 90-100 оС, в то время как температура поверхностного слоя остается на уровне 20 оС. Благодаря высокой теплоемкости воды в солнечном пруду за летний сезон накапливается большое количество теплоты, и вследствие низких тепловых потерь падение температуры в нижнем слое в холодный период года происходит медленно, так что солнечный пруд служит сезонным аккумулятором энергии. Теплота к потребителю отводится из нижней зоны пруда

Обычно глубина пруда составляет 1-3 м. На 1 м 2 площади пруда требуется 500-1000 кг поваренной соли, ее можно заменить хлоридом магния.

Наиболее крупный из существующих солнечных прудов находится в местечке Бейт-Ха-Арава в Израиле. Его площадь составляет 250 000 м 2. Он используется для производства электроэнергии. Электрическая мощность энергетической установки, работающей по циклу Ренкина, равна 5 МВт. Себестоимость 1 кВтч электроэнергии значительно ниже, чем на СЭС других типов.

Описанный эффект достигается благодаря тому, что по глубине солнечного пруда поддерживается градиент поваренной соли, направленный сверху вниз, т.е. весь объем жидкости как бы разделен на три зоны, концентрация соли по глубине постепенно увеличивается и достигает максимального значения на нижнем уровне. Толщина этого слоя составляет 2/3 общей глубины водоема. В нижнем конвективном слое концентрация соли максимальна и равномерно распределена в объеме жидкости. Итак, плотность жидкости максимальна у дна пруда и минимальна у его поверхности в соответствии с распределением концентрации соли. Солнечный пруд служит одновременно коллектором и аккумулятором теплоты и отличается низкой стоимостью по сравнению с обычными коллекторами солнечной энергии. Отвод теплоты из солнечного пруда может осуществляться либо посредством змеевика, размещенного в нижнем слое жидкости, либо путем отвода жидкости из этого слоя в теплообменник, в котором циркулирует теплоноситель. При первом способе меньше нарушается температурное расслоение жидкости в пруду, но второй способ теплотехнически более эффективен и экономичен.

Солнечные пруды могут быть использованы в гелиосистемах отопления и горячего водоснабжения жилых и общественных зданий, для получения технологической теплоты, в системах конденсирования воздуха абсорбционного типа, для производства электроэнергии.


Земные условия


Поток солнечного излучения, проходящий через площадку в 1 мІ, расположенную перпендикулярно потоку излучения на расстоянии одной астрономической единицы от центра Солнца (то есть вне атмосферы Земли), равен 1367 Вт/мІ (солнечная постоянная). Из-за поглощения атмосферой Земли, максимальный поток солнечного излучения на уровне моря - 1020 Вт/мІ. Однако следует учесть, что среднесуточное значение потока солнечного излучения через единичную площадку как минимум в три раза меньше (из-за смены дня и ночи и изменения угла солнца над горизонтом). Зимой в умеренных широтах это значение ещё в пару раз меньше. Это количество энергии с единицы площади определяет возможности солнечной энергетики.

Перспективы выработки солнечной энергии также уменьшаются из-за глобального затемнения - антропогенного уменьшения солнечного излучения, доходящего до поверхности Земли.

Способы получения электричества и тепла из солнечного излучения

Получение электроэнергии с помощью фотоэлементов.

Гелиотермальная энергетика - Нагревание поверхности, поглощающей солнечные лучи и последующее распределение и использование тепла (фокусирование солнечного излучения на сосуде с водой для последующего использования нагретой воды в отоплении или в паровых электрогенераторах).

"Солнечный парус" может в безвоздушном пространстве преобразовывать солнечные лучи в кинетическую энергию.

Термовоздушные электростанции (преобразование солнечной энергию в энергию воздушного потока, направляемого на турбогенератор).

Солнечные аэростатные электростанции (генерация водяного пара внутри баллона аэростата за счет нагрева солнечным излучением поверхности аэростата, покрытой селективно-поглощающим покрытием). Преимущество - запаса пара в баллоне достаточно для работы электростанции в темное время суток и в ненастную погоду.

Солнечные батареи на крыше здания Академии наук России.

Достоинства солнечной энергетики

Общедоступность и неисчерпаемость источника.

Теоретически, полная безопасность для окружающей среды (однако в настоящее время в производстве фотоэлементов и в них самих используются вредные вещества). Существует вероятность того, что повсеместное внедрение солнечной энергетики может изменить альбедо земной поверхности и привести к изменению климата (однако при современном уровне потребления энергии это крайне маловероятно).

Недостатки солнечной энергетики

. Фундаментальные проблемы

Из-за относительно небольшой величины солнечной постоянной для солнечной энергетики требуется использование больших площадей земли под электростанции (например, для электростанции мощностью 1 ГВт это может быть пару десятков квадратных километров). Однако, это недостаток не так велик, например, гидроэнергетика выводит из пользования заметно большие участки земли. К тому же фотоэлектрические элементы на крупных солнечных электростанциях устанавливаются на высоте 1,8-2,5 метра, что позволяет использовать земли под электростанцией для сельскохозяйственных нужд, например, для выпаса скота.

Проблема нахождения больших площадей земли под солнечные электростанции решается в случае применения солнечных аэростатных электростанций, пригодных как для наземного, так и для морского и для высотного базирования.

Поток солнечной энергии на поверхности Земли сильно зависит от широты и климата. В разных местах среднее количество солнечных дней в году может различаться очень сильно.

Технические проблемы

Солнечная электростанция не работает ночью и недостаточно эффективно работает в утренних и вечерних сумерках. При этом пик электропотребления приходится именно на вечерние часы. Кроме того, мощность электростанции может резко и неожиданно колебаться из-за смены погоды. Для преодоления этих недостатков нужно или использовать эффективные электрические аккумуляторы (на сегодняшний день это нерешённая проблема), либо строить гидроаккумулирующие станции, которые тоже занимают большую территорию, либо использовать концепцию водородной энергетики, которая также пока далека от экономической эффективности.

Проблема зависимости мощности солнечной электростанции от времени суток и погодных условий решается в случае солнечных аэростатных электростанций.

Дороговизна солнечных фотоэлементов. Вероятно, с развитием технологии этот недостаток преодолеют. В 1990-2005 гг. цены на фотоэлементы снижались в среднем на 4 % в год.

Недостаточный КПД солнечных элементов (вероятно, будет вскоре увеличен).

Поверхность фотопанелей нужно очищать от пыли и других загрязнений. При их площади в несколько квадратных километров это может вызвать затруднения.

Эффективность фотоэлектрических элементов заметно падает при их нагреве, поэтому возникает необходимость в установке систем охлаждения, обычно водяных.

Через 30 лет эксплуатации эффективность фотоэлектрических элементов начинает снижаться.


Экологические проблемы


Несмотря на экологическую чистоту получаемой энергии, сами фотоэлементы содержат ядовитые вещества, например, свинец, кадмий, галлий, мышьяк и т.д., а их производство потребляет массу других опасных веществ. Современные фотоэлементы имеют ограниченный срок службы (30-50 лет), и массовое применение поставит в ближайшее же время сложный вопрос их утилизации, который тоже не имеет пока приемлемого с экологической точки зрения решения.

Из-за экологических проблем и возникшего дефицита кремния начинает активно развиваться производство тонкоплёночных фотоэлементов, в составе которых содержится всего около 1 % кремния. К тому же тонкоплёночные фотоэлементы дешевле в производстве, но пока имеют меньшую эффективность. Так, например, в 2005 г. компания "Shell" приняла решение сконцентрироваться на производстве тонкоплёночных элементов, и продала свой бизнес по производству кремниевых фотоэлектрических элементов.

Заключение


Учитывая результаты существующих прогнозов по истощению к середине - концу следующего столетия запасов нефти, природного газа и других традиционных энергоресурсов, а также сокращение потребления угля (которого, по расчетам, должно хватить на 300 лет) из-за вредных выбросов в атмосферу, а также употребления ядерного топлива, которого при условии интенсивного развития реакторов-размножителей хватит не менее чем на 1000 лет можно считать, что на данном этапе развития науки и техники тепловые, атомные и гидроэлектрические источники будут еще долгое время преобладать над остальными источниками электроэнергии. Уже началось удорожание нефти, поэтому тепловые электростанции на этом топливе будут вытеснены станциями на угле.

Некоторые ученые и экологи в конце 1990-х гг. говорили о скором запрещении государствами Западной Европы атомных электростанции. Но исходя из современных анализов сырьевого рынка и потребностей общества в электроэнергии, эти утверждения выглядят неуместными.

Неоспорима роль энергии в поддержании и дальнейшем развитии цивилизации. В современном обществе трудно найти хотя бы одну область человеческой деятельности, которая не требовала бы - прямо или косвенно - больше энергии, чем ее могут дать мускулы человека.

Потребление энергии - важный показатель жизненного уровня. В те времена, когда человек добывал пищу, собирая лесные плоды и охотясь на животных, ему требовалось в сутки около 8 МДж энергии. После овладения огнем эта величина возросла до 16 МДж: в примитивном сельскохозяйственном обществе она составляла 50 МДж, а в более развитом - 100 МДж.

За время существования нашей цивилизации много раз происходила смена традиционных источников энергии на новые, более совершенные. И не потому, что старый источник был исчерпан.

Солнце светило и обогревало человека всегда: и тем не менее однажды люди приручили огонь, начали жечь древесину. Затем древесина уступила место каменному углю. Запасы древесины казались безграничными, но паровые машины требовали более калорийного "корма".

Но и это был лишь этап. Уголь вскоре уступает свое лидерство на энергетическом рынке нефти.

И вот новый виток в наши дни ведущими видами топлива пока остаются нефть и газ. Но за каждым новым кубометром газа или тонной нефти нужно идти все дальше на север или восток, зарываться все глубже в землю. Немудрено, что нефть и газ будут с каждым годом стоить нам все дороже.

Замена? Нужен новый лидер энергетики. Им, несомненно, станут ядерные источники.

Запасы урана, если, скажем, сравнивать их с запасами угля, вроде бы не столь уж и велики. Но зато на единицу веса он содержит в себе энергии в миллионы раз больше, чем уголь.

А итог таков: при получении электроэнергии на АЭС нужно затратить, считается, в сто тысяч раз меньше средств и труда, чем при извлечении энергии из угля. И ядерное горючее приходит на смену нефти и углю. Всегда было так: следующий источник энергии был и более мощным. То была, если можно так выразиться, "воинствующая" линия энергетики.

В погоне за избытком энергии человек все глубже погружался в стихийный мир природных явлений и до какой-то поры не очень задумывался о последствиях своих дел и поступков.

Но времена изменились. Сейчас, в конце 20 века, начинается новый, значительный этап земной энергетики. Появилась энергетика "щадящая". Построенная так, чтобы человек не рубил сук, на котором он сидит. Заботился об охране уже сильно поврежденной биосферы.

Несомненно, в будущем параллельно с линией интенсивного развития энергетики получат широкие права гражданства и линия экстенсивная: рассредоточенные источники энергии не слишком большой мощности, но зато с высоким КПД, экологически чистые, удобные в обращении.

Яркий пример тому - быстрый старт электрохимической энергетики, которую позднее, видимо, дополнит энергетика солнечная. Энергетика очень быстро аккумулирует, ассимилирует, вбирает в себя все самые новейшие идей, изобретения, достижения науки. Это и понятно: энергетика связана буквально со Всем, и Все тянется к энергетике, зависит от нее.

Поэтому энергохимия, водородная энергетика, космические электростанции, энергия, запечатанная в антивеществе, "черных дырах", вакууме, - это всего лишь наиболее яркие вехи, штрихи, отдельные черточки того сценария, который пишется на наших глазах и который можно назвать Завтрашним Днем Энергетики.

Список литературы


1.Преобразование геотермальной энергии в электрическую с использованием во вторичном контуре сверхкритического цик-ла. Абдулагатов И.М., Алхасов А.Б. "Теплоэнергетика. - 1988№4-стр.53-56".

2.Саламов А. А." Геотермические электростанции в энергетике мира" Теплоэнергетика2000№1-стр.79-80"

.Тепло Земли: Из доклада "Перспективы развития геотермальных технологий" Экология и жизнь-2001-№6-стр49-52.

.Тарнижевский Б.В. "Состояние и перспективы использования НВИЭ в России" Промышленная энергетика-2002-№1-стр.52-56.

.Кузнецов В.А. "Мутновская геотермальная электростанция" Электрические станции-2002-№1-стр.31-35.

.Бутузов В.А. "Геотермальные системы теплоснабжения в Краснодарском крае" Энергоменеджер-2002-№1-стр.14-16.

.Бутузов В.А. "Анализ геотермальных систем теплоснабжения России" Промышленная энергетика-2002-№6-стр.53-57.

.Доброхотов В.И. "Использование геотермальных ресурсов в энергетике России" Теплоэнергетика-2003-№1-стр.2-11.

.Алхасов А.Б. "Повышение эффективности использования геотермального тепла" Теплоэнергетика-2003-№3-стр.52-54.

10.Авезов Р.Р., Орлов А.Ю. Солнечные системы отопления и горячего водоснабжения Ташкент: Фан 1988 г

11.Авдуевский В.С., Лесков Л.В. Куда идет советская космонавтика? - М.: Знание, 1990 (серия "Космонавтика, астрономия")

.Андреев С.В. Солнечные электростанции - М.: Наука 2002

.Базаров Б.А., Заддэ В.В., Стебков Д.С. и др. Новые способы получения кремния солнечного качества. Сб. "Солнечная фотоэлектрическая энергетика". Ашхабад, 1983

.Бурдаков В.П. Электроэнергия из космоса М: Энергоатомиздат 1991

.Ванке В.А., Лесков Л.В., Лукьянов А.В. Космические энергосистемы. - М.: Машиностроение, 1997.

.Володин В.Е., Хазановский П.И. "Энергия, век двадцать первый". - М.: Знание, 1998

.Грабмайер И.Г. "Сименс". Дешевое изготовление качественного солнечного кремния и листового кремния для солнечных элементов. Труды 7 международной конференции по использованию солнечной энергии 9-12 октября 1990 г. Франкфурт, Германия.

.Грилихес В.А. Солнечные космические энергостанции - Л.: Наука, 1986.

.Колтун М.М. Солнце и человечество М: Наука 1981

.Лидоренко Н.С., Евдокимов В.М., Стребков Д.С. Развитие фотоэлектрической энергетики. - М., Информэлектро, 1988

.Рубан С.С. Нетрадиционные источники энергии-М.: Энергия, 2003

.Стребков Д.С. Сельскохозяйственные энергетические системы и экология. Альтернативные источники энергии: эффективность и управление. 1990

23.Харченко Н.В. Индивидуальные солнечные установки М. Энергоатомиздат 1991


Содержание Введение История развития геотермальной энергетики Геотермальная энергетика Краткий обзор гидрогеотермических исследований Основны

Больше работ по теме:

КОНТАКТНЫЙ EMAIL: [email protected]

Скачать реферат © 2017 | Пользовательское соглашение

Скачать      Реферат

ПРОФЕССИОНАЛЬНАЯ ПОМОЩЬ СТУДЕНТАМ